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We extend the investigation of the viscous stability of a dense
planetary ring by the effect of thermal diffusion of random kinetic
energy. We find that this additional diffusive process has mainly a
stabilizing effect on the overstable modes. c© 2000 Academic Press
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A poorly understood type of structure in Saturn’s main rings, observed
the space probes, are the irregular structures in ring regions of high op
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depthτ >1 at scales seen down to the limit of the resolution of the exp
ments (≈100 m). A favored physical explanation for these fluctuations has b
the viscous instability first investigated by Lin and Bodenheimer (1981), W
(1981), and Lukkari (1981). Viscous instability takes place when the deriva
of dynamic shear viscosity with respect to density is negative which promote
onset of a self-amplifying negative diffusion process. Araki and Tremaine (19
have shown that the finite size of the ring particles and the related contribu
to the transport coefficients suppress the viscous instability. This conclusio
been confirmed by numericalN-particle experiments (Wisdom and Tremain
1988, Salo 1991, 1992a).

Another interesting effect, which is able to promote the formation of rad
structures, is the viscous overstability (or pulsational instability) predicte
accretion disks (Kato 1978, Blumenthalet al.1984) and in the context of plan
etary rings (Papaloizou and Lin 1988, Schmit and Tscharnuter 1995). Here
system becomes unstable when the mentioned derivative of the dynamic
viscosity with respect to density becomes large and positive (see, for inst
Papaloizou and Lin 1988, Schmit and Tscharnuter 1995). In the latter in
tigations a quasi-equilibrium between viscous heating and collisional coo
has been assumed, and only momentum and mass balances were used
hydrodynamic modeling of the ring. Thus, the influence of (kinetic) tempe
ture fluctuations was not taken into account. In the case of accretion disk
energy balance equation has been considered to model the influence of th
radiation on the stability behavior of the disk (Kato 1978, Blumenthalet al.
1984). In this study we demonstrate the effect of kinetic heat transport inhe
in the random motion of ring particles on overstability in a dense planetary r
For simplicity we restrict our attention to purely axisymmetric perturbations
basic Keplerian flow of a ring. It must be noted, however, that nonaxisymme
structures might be important for planetary rings, because in theoretical mo
and in simulations they occur naturally in the presence of the self-gravity o
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and Tremaine 1978a). These structures may influence the formation of a m
radial pattern as seen on larger scales by space probes, but even then th
of kinetic heat flux can be expected to be preserved, although possibly qua
tively altered, and it should not be neglected in future hydrodynamic mode
of the ring flow.

We perform a linear stability analysis of the hydrodynamic equations
vary parameters, which serve as scalings of the constitutive relations fo
transport coefficients. We use cylindrical coordinates (r,2, z) and assume an
axisymmetric (∂/∂2→ 0), thin disk of granular grains surrounding a plan
The surface mass density of the disk is given byσ = ∫ ρ dz (mass density
ρ(r , t)), the vertically integrated pressure isP= ∫ p dz, and the velocity field
is denoted byv= u(t, r )er + v(t, r )e2. With these assumptions the balances
momentum, mass, and energy read

u̇+ uu′ − v
2
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−8′ − 1
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− γ, (1d)

where the dots and the primes denote the partial derivatives with respe
the timet and the radial distancer from the central body.G, M , 8, Ä= v/r
are the gravitational constant, the mass of the central body, the gravita
potential of the disk, and the angular velocity, respectively.T is the temperature
defined via the trace of the velocity dispersion tensor of the ring particles.
vertically integrated pressure is labeled byP= σT . The (vertically integrated)
quantitiesν, η= σν, ζ , andκ are the kinematic shear viscosity, the dynam
viscosity, the kinematic bulk viscosity, and the heat conductivity, respectiv
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The difference between granular gases and the usual hydrodynamic ga
fluids is the granular coolingγ due to inelastic collisions as well as differenc
in the transport coefficients. The gravitational potential8 is determined by the
Poisson equation

1

r
(r8′)′ + ∂2

z8 = 4πGσδ(z), (2)

whereδ(z) is Dirac’s delta function. The right-hand sides of (1a) and (1b) con
the vertically integrated volume forces: the gravity of the central body, the s
gravity of the disk, pressure, and friction. The energy balance (1d) is gove
by the effects of the heat conduction, mechanical work, the viscous heating
the collisional cooling. To investigate the stability of the system we cons
the vectorx= (u, v, σ, T,8) to be composed of a ground statex0 and small
perturbationsx1 according to

x = x0(r0)+ x1(r, t), (3)

with |r0− r |¿ r0. All quantitiesy(x) depending on the state vectorx, like the
pressureP and all transport coefficients, are expanded about the ground stax0

according toy= y0+∇x y|0 · x1+O(|x1|2)≈ y0+ y1. The stationary ground
state is characterized by the approximate solution

v0 =
(

GM

r0

) 1
2

≡Ä0r0; T ′0 = σ ′0 = u0 = 0; ∂t x0 = 0. (4)

Substituting Eqs. (3) and (4) into (1a)–(1d), we obtain the linearized syste

u̇1 − 2Ä0v1 = −8′1 −
P′1(σ1, T1)

σ0
+
(
ζ0 + 4

3
ν0
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u′′1 (5a)

v̇1 + 1

2
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σ̇1 + σ0u′1 = 0 (5c)

3
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(5d)

8′′1 + ∂2
z81 = 4πGσ1δ(z), (6)

whereO(|x1|2) are neglected. We perform a Fourier decomposition into pu
radial modesx1∝ exp(st+ ikr ) for all perturbed quantities, wheres andk=
2π/λ are the growth rate and wave number (λ radial wavelength), respectively
Then, with Eqs. (5a)–(5d) the solubility condition of the resulting algebr
system yields the dispersion relation

s4 + As3 + Bs2 + Cs+ D = 0, (7)

with
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Concerning the self-gravity we have used81 (r, z= 0)=−2πGσ1/k, which
follows from the jump condition of the potential atz= 0 as well as from the
transition of the Poisson equation (2) atz= 0 to a Laplace equation forz 6= 0
since their solutions atz→±0 must coincide (see Shu 1984).

For an application of the dispersion relation (7) to the dense saturnian ring
will have to know the values for the dependency of the transport coefficients
the cooling on density and temperature. Since these are in general not yet
able for dense rings we will limit our present study to the expected qualita
effects of the additional energy equation, by using a simplified but physic
reasonable set of assumptions. For the constitutive relations we useν∝ Tασβ ,
κ∝ η, andζ∝ ν. According to analytical studies (Goldreich and Tremaine 197
Stewartet al. 1984) we useα= 1. However, simulations of dense rings sugge
an effectiveα≤ 1/2 (see Salo 1991 and under the additional influence of a
distribution Salo 1992b). This effect can be attributed to the nonlocal pa
the shear viscosity that depends much more weakly on the temperature
the local part. Thus, for the total viscosity the value ofα may be reduced in
dense systems. For the exponentβ describing the dependence on density w
haveβ >1 (Araki and Tremaine 1986) in dense rings (τ >1). For the gran-
ular cooling we useγ =Äτσ (1− ε2)T (Stewartet al. 1984), whereε is the
coefficient of restitution andτ =πR2

pσ/m is the optical depth with the parti
cle radiusRp and massm. In principle, in an ensemble of inelastic particle
the temperature may depend on the density asT = c2

0(σ/σ0)δ , wherec0 is the
mean velocity dispersion. In force-free granular gases a value ofδ=−2 is ob-
served (Haff 1983, Jenkins and Richman 1985). Forδ <−1 another instability
may arise, the so-called pressure instability of granular gases (Goldhirsc
Zanetti 1993) where∂P/∂σ <0 (Spahnet al. 1997, Petzschmannet al. 1999).
This instability occurs only at very small scales. For Keplerian systems s
lations indicate a small negativeδ for dilute systems, vanishing for increasin
τ (Salo 1991, see Fig. 5a). This is in accordance with the simulational re
∂ log(ν)/∂ log(σ )≡β +αδ= 1.27 (Wisdom and Tremaine 1988, Salo 199
when compared to the aforementioned analytically determinedβ >1 (Araki
and Tremaine 1986) forτ >1, suggesting also a small value of|δ|. Therefore,
we chooseδ= 0 in our plots.

For the ratio of heat conductivity to shear viscosity we take the value for de

(elastic) hard sphere gases (Chapman and Cowling 1970), i.e.,κ/η= 5, which
should give at least the right order of magnitude for the dissipative ring particle
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ensemble. Similarly, we find for the ratio of bulk viscosity to shear visco
ζ/ν= 1.

The limit κ→∞ yields the dispersion relation derived by Schmit a
Tscharnuter (1995) provided that the pressure is given byP= σT0 andT0= c2

0.
This becomes clear by splitting off the hydrodynamic heat flux mode. Then
dispersion relation can be rearranged as
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(8)

where the functionF contains all the derivatives with respect to temperatu
For this isothermal limit the regions of stability and overstability are show
Fig. 1 (dashed lines), in dependence ofβ andλ. For the parameters we have us

FIG. 1. The overstable modeof the dispersion relation (Eq. 7). Lines o
equal 10-folding times of harmonic perturbations are shown in units of the
bital time in the (λ, β) plane. The isothermal caseκ/η=∞ (dashed curves
and the nonisothermal caseκ/η= 5 (solid curves) are plotted. Neutral stab
ity is drawn in each case as a thick line, separating the overstable (abov
line) from the stable region (below the line). The upper plot correspond
α (≡∂ log(ν)/∂ log(T))= 1, the lower to a smallerα (see text). Here, the tem
perature is assumed to be independent of the surface density, i.e.,δ= 0. The op-
tical depth is equal to 1. The horizontal dotted line marks the value ofβ = 1.27,

corresponding to this optical depth in simulations of Wisdom and Trema
(1988).
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FIG. 2. The instable modeof the dispersion relation (Eq. 7) for the sam
parameters as described in the legend of Fig. 1.

Ä0= 1.95× 10−4 s−1,σ0= 133 g cm−2 corresponding toτ = 1 for ice particles,
c0= 0.2 cm s−1, ν0= 54 cm2 s−1, corresponding to the B ring of Saturn, an
further a particle radiusRp= 1 m, a particle bulk density of 1 g cm−3, andε= 0.4
for the coefficient of restitution. The latter is the mean value resulting from
variable restitution law (Bridgeset al.1984) at the mentioned velocity dispersio
For β = 1.27 (corresponding toτ = 1, δ= 0) all wavelengthsλ>40 m should
be overstable. The fastest growing wavelength is slightly less than 100 m.

With decreasing ratioκ/η we find that the neutral stability curve is shifte
to higherβ and to larger wavelengths (solid lines in Fig. 1). This behavio
not sensitive to small variations ofκ/η. The lower and upper parts of Fig.
demonstrate an additional stabilizing effect of a reduced value ofα for dense
systems, as mentioned before, in the nonisothermal model. Another facto
tends to stabilize the overstable mode is the bulk viscosity. Ifζ/ν exceeds unity
(unity was assumed in Fig. 1), the viscous overstability is more difficult
achieve. For example,ζ/ν= 2 would shift the neutral boundary to aboutβ = 1
for the case ofκ/η= 5, α= 0.5. The variation of the bulk viscosity affect
similarly the isothermal model as already indicated by the analysis of Sc
and Tscharnuter (1995), although they assumedζ/ν= 1 throughout their paper

Figure 2 shows the influence of the heat flow on the instable mode (Re(s)> 0,
Im(s)= 0) of Eq. (7). Here, forκ/η= 5 the instability is shifted to values ofβ
higher than those for the isothermal caseκ/η=∞. However, this shift is less
pronounced for smallerα. Thus, in dense systems (τ >1) withβ >1.27 viscous
instability is also not to be expected in the nonisothermal model.

The result of this Note is that heat conduction is able to change the sta
behavior of hydrodynamic models of dense planetary rings considerably.
ther, the importance of a detailed knowledge of the magnitudes of the tran
coefficients and their dependence on densityandtemperature is stressed. For in
inestance, the differences observed in the viscosities for free granular gases (Jenkins
and Richman 1985) and for the material forming a planetary ring (Goldreich and
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Tremaine 1978b, Stewartet al.1984, Salo 1991, Schmidtet al.1999) show that
the transport coefficients andT(σ ) are also determined by the physical enviro
ment. Further, an increased ratioζ/ν additionally stabilizes our hydrodynami
model, shifting neutral stability to even higher values ofβ for the overstable
mode. This emphasizes the importance of an improved analytical and num
evaluation of the constitutive relations in order to study the stability of plane
rings in greater detail.
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