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[1] Particle simulations are carried out to study density
features caused by small moonlets embedded in a dense
planetary ring. The creation of a ‘‘propeller’’ like structure
is found together with adjacent density wakes. Both features
are clear indications for the existence of moonlets in the
rings. We confirmed that the propeller scales with the Hill-
radius in radial direction whereas its azimuthal extent is
determined by the ratio between the moonlet-mass and the
ring-viscosity. Our findings bear direct implications for the
analysis of the Cassini imaging (ISS) and occultation
(UVIS) data: (i) for the detection of embedded larger bodies
(>30 m) in Saturn’s rings, and (ii) for remotely probing
transport properties of the rings. The existence of a moonlet
population may point to a catastrophic disruption of a parent
body as a formation scenario for rings. Citation: Seiß, M.,

F. Spahn, M. Sremčević, and H. Salo (2005), Structures induced

by small moonlets in Saturn’s rings: Implications for the

Cassini Mission, Geophys. Res. Lett., 32, L11205, doi:10.1029/

2005GL022506.

1. Introduction

[2] Saturn’s dense rings consist of icy particles ranging in
size from a few centimeters up to several meters. Further-
more, some bigger bodies are also expected to exist in the
rings with sizes of tens of meters up to kilometers. It is
known that the gravity of moonlets produce density wakes
[Cuzzi and Scargle, 1985; Showalter et al., 1986; Lewis
and Stewart, 2000], gaps with a ringlet covering
the moonlet orbit [Henon, 1981; Lissauer et al., 1981;
Spahn and Wiebicke, 1989; Hänninen, 1993] and
S-shaped density structures (propellers) [Spahn and
Sremčević, 2000; Sremčević et al., 2002]. Theories about
gaps and wakes combined with the analysis of Voyager
data predicted a few satellites in Saturn’s rings [Lissauer et
al., 1981; Showalter et al., 1986; Spahn and Sponholz,
1989]. However, only a single satellite (Pan) has been
finally found in the Encke division [Showalter, 1991].
[3] A probabilistic scattering model [Spahn and

Wiebicke, 1989] predicted a formation of a gap in the
region jbj � 4 divided by a narrow ringlet covering
the orbit of the moon at jbj = 0. The impact parameter

b = (r � a0)/h = x/h and the radial features can be scaled
by the Hill radius

h ¼ a0

Rs

rm
3rs

� �1=3

� Rm: ð1Þ

The densities and radii of moonlet and Saturn as well as the
semi-major axis are denoted by rm, rs, Rm, Rs and a0,
respectively.
[4] However, the model of Spahn and Wiebicke [1989] is

inappropriate for smaller moonlets. In this case viscous
diffusion of particles becomes important, counteracting the
tendency of the moonlet to create a gap. Therefore, Spahn
and Sremčević [2000] and Sremčević et al. [2002] (herein-
after referred to as SpSr and SSD) extended the theory of
gravitational scattering to diffusion of the ring material in
the radial direction, described by mass- and momentum
balances. Solutions of the related nonlinear diffusion equa-
tion revealed a scaling of the azimuthal direction as

K ¼ W0h
3

2 1þ bð Þn0a0
; ð2Þ

giving the scaled azimuthal coordinate f = y/(a0K), whereas
y is the azimuthal distance from the moonlet. The

Keplerian frequency is defined by W0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMs=a

3
0

q
. The

scaling parameterK is determined by the ratio h3/n0/Mm/n0,
where n0 denotes the kinematic viscosity. Knowing the
moonlet mass Mm from the radial features of the S-shaped
propeller structure, an analysis of the azimuthal structures
enables to estimate the viscosity n0. The coefficient b 
 1
arises from the viscosity model n = n0 � (t/t0)b [Schmit and
Tscharnuter, 1995; Salo et al., 2001], where t is the optical
depth of the ring. In spite of the improvement of the scattering
model due to the consideration of dissipative processes, some
restrictive assumptions have been necessary for its derivation.
For instance, (i) the scattering region is reduced to a line, (ii)
the collisions are neglected during the scattering and (iii) the
azimuthal velocity component is taken to be the Keplerian
circular velocity beyond the scattering line. Thus, the model
of gravitational scattering does not account for moonlet
density-wakes.
[5] In order to check the influence of these simplifications,

to verify previous predictions (SSD) and to extend them to
small moonlet sizes, we carry out N-body simulations. This
alternative approach allows to investigate the influence of the
moonlet induced wakes on the propeller as well as to resolve
the density structures inside the scattering region.

2. Method

[6] For the N-body simulations we use the local method,
first introduced for rings by Wisdom and Tremaine [1988]
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and further elaborated by Salo [1991, 1995]. The box, with
half-widths Lx and Ly in radial and azimuthal directions, is
filled with N particles, representing a dynamical optical
depth t = pNR2/(4LxLy). Tests suggest Lx = 9h and Ly =
2.8 Ka0 to be the optimum size of the calculation box -
large enough to cover the main structures and still
manageable numerically. We fixed t to 0.08, requiring
N = 2,900–190,000 particles for moonlet radii Rm = 7–
20 m. The choice of Rm and t is solely limited by the
computer performance. However the scalings work even
better for larger moonlets. The value t = 0.08 fits
conditions of the C-ring, nevertheless the results can be
applied to denser regions (A and B ring) using the
scaling laws for the adapted viscosity.
[7] The particles are modeled by inelastic hard spheres

with radius R = 1 m. A semi-major axis of a0 = 108 m has
been used, corresponding to h = 1.35 Rm for an icy moonlet
(rm = 900 kg m�3). However, the results can be scaled to
other planetocentric distances provided that h/Rm / a0rm

1/3 is
fixed. A constant coefficient of restitution � = 0.5 has been
chosen for the collisions. Apart from the inelastic collisions,
the motion of the particles around the moonlet is described

by the Hill equations [e.g., Salo, 1991]. The moonlet is
placed in the center of the box. The gravity between the
particles is not taken into account. The effect of self-gravity
is approximated via an enhanced vertical frequency Wz =
3.6W0 [Wisdom and Tremaine, 1988; Salo, 1991]. Thus, the
simulations can not account for the spontaneous creation of
gravitational wakes produced by the gravity of the small
ring particles [Salo, 1992, 1995]. Self-gravity effects are
discussed in section 4.
[8] Usually periodic boundary conditions are used in the

radial as well as in the azimuthal direction [Wisdom and
Tremaine, 1988; Salo, 1991, 1995]. Because we are not able
to simulate the whole azimuthal extent of the propeller, the
particles are still perturbed by the moonlet when they leave
the calculation region. Therefore the incoming flux of
particles would not correspond to an unperturbed ring flow.
To avoid this, we drop the azimuthal periodic boundary
conditions and utilize separate simulations without a moon-
let, but with periodic boundary conditions to sample the
unperturbed velocity distribution. Then, we use this data
(particles’ position and velocity while crossing the bound-
ary) to simulate the incoming flow of the perturbed simu-
lation cell at the azimuthal boundaries. In the radial
direction we retain the periodic boundary condition.

3. Results

[9] Figures 1a–1c show the optical depth t for simula-
tions with different moonlets (Rm = 7, 12, 20 m). All figures
show a S-shaped propeller structure. The moonlet tries to
generate a gap whereas collisional diffusion replenishes the
material along increasing azimuth f = y/(a0K). Density
wakes evolve adjacent to the propeller (jbj � 2). The phase
of the wakes does not scale with K, but rather with
azimuthal wave number j~mj = 2a0/(3hb) [Showalter et al.,
1986].
[10] Figure 1d shows the propeller of a Rm = 17 m sized

moonlet as it might be seen with high resolution cameras.
The extension of the propeller is much larger in the
azimuthal direction than in the radial one. The moonlet
location is indicated by the kink in the gap at f = b = 0.
[11] To check the scalings of the structure, in Figure 2 the

radial and azimuthal profiles corresponding to different Rm

have been plotted using scaled units. All radial profiles have
been averaged over the azimuth in order to cancel wake
effects. Furthermore we excluded the region where the

Figure 1. Steady-state density response for different sized
moonlets. The plots are shown in scaled coordinates (a) Rm =
7 m, (b) Rm = 12 m and (c) Rm = 20 m. Part (d) shows the
resulting density of aRm=17mmoonlet in physical unitswith
a correct aspect ratio, i.e. how it might appear in Cassini
imaging data.

Figure 2. Radial and azimuthal profiles of the propeller. Part (a) shows the azimuthally averaged radial profile (for f > 1)
for moonlet radii Rm = 9–20 m. Part (b) shows the azimuthal profile at b = �2 scaled by a0 � K. Only the quadrant of the
perturbed outgoing particles is presented (b < 0 and f > 0). The thick gray solid line represents the approximate analytical
solution (Figure 10c of SSD). The other lines are simulation data for different sized moonlets and the symbols correspond
to simulations of a Rm = 10 m moonlet, but with different azimuthal box size. The plot (c) illustrates the azimuthal
profile at b = �1.
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moonlet gravity dominates the structure (f < 1). Figure 2a
shows a good agreement between the radial profiles for all
different moonlets. Theminimum of the gap is located at jbj =
2, like in the simulations without diffusion [Spahn and
Wiebicke, 1989].
[12] Figure 2b shows the azimuthal profiles for a cut at

the minimum of the gap at jbj = 2. Beyond a critical value f >
fc(Mm), denoting the region of gravitational influence of the
moonlet, all profiles converge to almost a single line. A good
agreement is found with the theoretical prediction by SpSr
and SSD indicating that the azimuthal extent scales with K.
We also fitted the analytical solution (see Figure 10c of SSD)
in the numerical results (gray line), which provides an
estimate of the azimuthal scale K = 0.14 m�2 � h3/a0. This
value K corresponds to a viscosity n0,p = 3 cm2 s�1 in the
perturbed region, assuming b
 1.Wemeasured a viscosity of
n0,u = 1.2 cm2 s�1 in the unperturbed cell. Both measured
viscosities are of the same order of magnitude, suggesting a
fair agreement between simulations and theory. The differ-
ence in both values n0 are caused by the simplifying assump-
tions made in the analytical model. The perturbed optical
depth varies between t/t0 = 0.2–1.3 violating the assumption
of small deviations made in SSD. For such considerable
variations the coefficient b is no more constant [Salo et al.,
2001].
[13] The symbols in the Figure 2b represent simulations

with Rm = 10 m, but using different azimuthal box sizes (Ly =
1–5.4 Ka0). The results agree quite well, demonstrating the
independence of our results with respect to the box size.
Figure 2c represents a cut at jbj = 1. At this radial position the
density depletion is still noticeable, but the wakes do not
influence the profile. Here the convergence of the lines for
growing azimuthal length is even more impressive.
[14] At smaller azimuthal longitudes the scaling does not

work anymore because of the finite size of the scattering
region and the stronger dominance of the wakes in the gap.
The critical value fc(Mm) 
 50 � h/(a0 K) / h�2 shrinks
with increasing moonlet mass, indicating that the concept of
a scattering line mimicking the Hill sphere becomes more
realistic for larger moonlets (see also Figures 1a–1c).
[15] Figures 3a–3c show a zoomed part of the region of

interest whereas the analytical solution (SSD) is plotted in
Figure 3d for comparison. The wakes are still prominent in
the region of the gap up to jbj � 2 in contrast to the wake
model [Showalter et al., 1986] where wakes occur at jbj � 4.
Of course, the wakes cannot be described with the scattering
model, because azimuthal structures are averaged out, except
for the gap. On the other hand, our numerical experiments
take into account all those effects leading to a propeller
interfered by moonlet wakes – a pattern which can be
expected to show up in Saturn’s rings provided larger bodies
exist there. In all cases, the maximal extent in the azimuthal
direction of the contour lines agree well with each other,
confirming the scaling predicted by theory. This is even more
astonishing having in mind that the azimuthal length of the
figures represent 340m for Rm = 7m in contrast to 8000m for
Rm = 20 m.

4. Discussion

[16] Simulations have been run with different sized
embedded moons Rm = 7–20 m. Larger moonlets, higher
optical depths as well as self-gravity could not be included

because of the limiting computer performance. On the other
hand the analytical model becomes more realistic for larger
moonlets. In that view our current results are very encour-
aging. The scalings seem to be valid for simulated moonlet
sizes and are expected to work even better for larger bodies
Rm = 30–500 m. Further it has been shown that the moonlet
induced wakes do not noticeably influence the scaling laws
of the propeller. The model (SSD) predicts that the threshold
moonlet size separating propeller and gap is Rm = 500 m �
[n0/10 cm2 s�1]1/3. Larger moonlets are able to sweep free a
complete gap, but the characteristic kink vanishes, and thus,
they are probably harder to associate with moonlets.
[17] The self-gravity, not considered here, deserves sep-

arate attention, because it influences the transports and
causes density wakes which might change the picture out-
lined here. Self gravity wakes are characterized by the
critical wavelength lcr 
 100 m and the pitch angle a =
20
–25
 [Salo, 1995]. The gap width of the propeller is
approximately 2.5h and becomes larger than lcr for Rm =
30 m. For Rm > 100 m the characteristic length scales of
the propeller Lr = 10h 
 1.3 km and Lf = 2 � 50 Ka0 

4 � 104 km (n0 = 3 cm

2 s�1, b = 1; compare SSD) exceed by far
lcr. The pitch angle of the gravity-wakes can be compared
with the ratio of the propeller extensions tan a = Lr/Lf/ h�2.
Boulders with Rm = 0.5–5 m (n0 = 1–100 cm2 s�1, b = 1)
would show tilts comparable to that of gravity wakes.
However, we are interested in propellers caused by larger
moonlets (Rm > 30 m) which are azimuthally elongated
structures in contrast to the tilted wakes. Self-gravity wakes
are expected to superimpose the propeller-wake structure by
overlaying a fine scale pattern. Further the self-gravity
modified viscosity [Daisaka et al., 2001] increases the
efficiency of the radial transports, thus the maximal moonlet
size for propeller formation might in fact be a bit larger than
500m anticipated above: e.g. n0 = 100 cm

2 s�1would roughly
double the size. Summarizing, we argue that the propellers
and wakes created by moonlets Rm > 30 m can be slightly
modified but likely not destroyed by the self-gravity
effects.
[18] On 1 July 2004 Cassini arrived at Saturn and started

delivering data with unprecedented resolution. This offers a
great chance to discover moonlets (200–500 m) embedded
in the rings, by applying the results of our simulations -
especially scalings confirmed here - to the ISS imaging and
the UVIS occultation data of the Cassini spacecraft, pro-
vided that such bodies exist in the rings. In this context
characteristic features, especially the kink of the structure

Figure 3. Gray-coded densities with overplotted isolines
for different sized moonlets. Panels (a)–(c) show the
resulting density fields for Rm = 7 m, 12 m, 20 m, whereas
(d) represents the analytical solution (Figure 10c of SSD).
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found with our numerical experiments, could reveal the
location of the moonlet in the narrow angle images. There
the radial location of the gap minimum changes suddenly
from about �2h to +2h. The absolute scale of this ‘jump’
corresponds to 1000 m for Rm = 200 m and to 2500 m
for Rm = 500 m. For comparison, the published imaging
data of Cassini at Saturn orbit insertion (SOI) had their
highest spatial resolution of about 200–300 m, so that
moonlets of two hundred meter in size mark the limit of
the detectability.
[19] What might be the probability to detect a moonlet in

a Cassini image? Consider that the particle size distribution
could be modeled by a two sided power law n(R) / R�q,
e.g. assuming the ring has been formed by a catastrophic
disruption of a parent body. French and Nicholson [2000]
estimated q = 2.9 for particles R = 1 cm–20 m from stellar
occultation observations of the outer A-ring. A sharp knee is
expected in the distribution showing a steeper slope for
larger particles R > 20 m. Provided that the moonlet Pan is
the largest fragment of the disruption a power law with q 

6 would be plausible for particles R > 20 m [Cuzzi et al.,
1984], but also q 
 7 or 8 are conceivable. Density
structures of moonlets Rm > 200 m can be discovered in
the high resolution SOI images. The detection probability of
this size class can be estimated to 0.1–13 bodies per image
for t = 0.5, assuming the power law holds in this range.
Parameters of the inner A and the B ring would roughly
double the predicted number of moonlets, promising a good
chance to find one, provided such a moonlet population
exists. However, it has to be noted that a direct extrapolation
of such a distribution to larger sizes would imply more than
100 moonlets with Rm > 500 m in the A and B rings, thus
being able to clear gaps. This seems to be ruled out by the
fact that almost no empty gaps (except Encke and Keeler
gaps) are known in these rings. Nevertheless if the largest
particles of the continuous distribution are 20m, a small
number of larger bodies can not be excluded to exist in the
rings.
[20] An alternative method to find signatures of an

embedded moonlet is to analyze UVIS occultation data.
UVIS data are much higher in resolution (
20 m [Esposito
et al., 1998]; similar to RSS 
10 m [Kliore et al., 2004])
but only one dimensional. Here the moonlet can be uncov-
ered by the characteristic radial propeller shape (Figure 2a),
but it is harder to distinguish them from other structures in
the ring. Thus, the best approach would be at first to search
for indications in the imaging data and then to analyse
UVIS optical depth profiles in detail. Additionally, propeller
structures could superpose each other and provide an
alternative explanation for the radial fine structure seen in
some Cassini images [see Porco et al., 2005, Figures 5a
and 5f], beside instabilities [Schmit and Tscharnuter, 1995;
Schmidt and Salo, 2003]. All in all, even if the existence and
distribution of moonlets is quite uncertain, it is an interesting
challenge to check the ISS and UVIS data on the base of our
results.
[21] Once a propeller has been identified in the ISS or

UVIS data the analysis of the the propeller shape can
deduce the mass of the moonlet as well as the viscosity of
the ring material from the scalings laws. Finally, if enough
moonlets were found, it would become possible to gain

information about the distribution of such bodies, contain-
ing hints about the origin of Saturn’s rings.

[22] Note added in proof. In May 2005 a satellite
(S/2005 S1) has been detected inside the Keeler gap,
showing the pairwise wakes seen in Figure 1 and confirming
the expected radial scaling.
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