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a b s t r a c t

The two major factors contributing to the opposition brightening of Saturn’s rings are (i) the intrinsic
brightening of particles due to coherent backscattering and/or shadow hiding on their surfaces, and (ii)
the reduced interparticle shadowing when the solar phase angle a ? 0�. We utilize the extensive set of
Hubble Space Telescope observations (Cuzzi, J.N., French, R.G., Dones, L. [2002]. Icarus 158, 199–223)
for different elevation angles B and wavelengths k to disentangle these contributions. We assume that
the intrinsic contribution is independent of B, so that any B dependence of the phase curves is due to
interparticle shadowing, which must also act similarly for all k’s. Our study complements that of Poulet
et al. (Poulet, F., Cuzzi, J.N., French, R.G., Dones, L. [2002]. Icarus 158, 224), who used a subset of data for a
single B � 10�, and the French et al. (French, R.G., Verbiscer, A., Salo, H., McGhee, C.A., Dones, L. [2007b]
PASP 119, 623–642) study for the B � 23� data set that included exact opposition. We construct a grid of
dynamical/photometric simulation models, with the method of Salo and Karjalainen (Salo and Karjalai-
nen [2003]. Icarus 164, 428–460), and use these simulations to fit the elevation-dependent part of oppo-
sition brightening. Eliminating the modeled interparticle component yields the intrinsic contribution to
the opposition effect: for the B and A rings it is almost entirely due to coherent backscattering; for the C
ring, an intraparticle shadow hiding contribution may also be present.

Based on our simulations, the width of the interparticle shadowing effect is roughly proportional to B.
This follows from the observation that as B decreases, the scattering is primarily from the rarefied low
filling factor upper ring layers, whereas at larger B’s the dense inner parts are visible. Vertical segregation
of particle sizes further enhances this effect. The elevation angle dependence of interparticle shadowing
also explains most of the B ring tilt effect (the increase of brightness with elevation). From comparison of
the magnitude of the tilt effect at different filters, we show that multiple scattering can account for at
most a 10% brightness increase as B ? 26�, whereas the remaining 20% brightening is due to a variable
degree of interparticle shadowing. The negative tilt effect of the middle A ring is well explained by the
the same self-gravity wake models that account for the observed A ring azimuthal brightness asymmetry
(Salo, H., Karjalainen, R., French, R.G. [2004]. Icarus 170, 70–90; French, R.G., Salo, H., McGhee, C.A., Dones,
L. [2007]. Icarus 189, 493–522).

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Saturn’s rings, like most atmosphereless objects in the Solar
System, exhibit an opposition effect: a rapid increase in the bright-
ness when the Sun-observer phase angle a ? 0�. Most strikingly,
this has been demonstrated directly by the zero-phase Cassini
images (Déau et al., submitted for publication), showing a bright
localized spot on the ring location centered at exact opposition.
Similarly, Hubble Space Telescope observations during the excep-
tional 2005 opposition (French et al., 2007b) revealed that the
brightness increase continues all the way to zero phase angle: in
2005, the Earth was transiting the Sun as seen from Saturn, imply-

ing a minimum a set by the finite solar radius of 0.029�, with the
brightness increasing by about 1/3 for a < 0.5�, in addition to a sim-
ilar increase between 0.5� < a < 6�.

Two main explanations have been offered for the opposition
brightening of Saturn’s rings: (1) the intrinsic brightening of the
grainy ring particle surfaces, and (2) the reduced amount of mutual
interparticle shadowing between ring particles, as the phase angle
a ? 0�. The main contributor to intrinsic brightening is likely to be
the coherent backscattering mechanism (CB), based on construc-
tive interference between the incoming and outgoing light rays
(Akkermans et al., 1988; Shkuratov, 1988; Hapke, 1990; Muinonen
et al., 1991; Mishchenko, 1992), although shadow hiding (SH) at
the particle’s surface (Hapke, 2002) may also contribute. Coherent
backscattering, as well as surface shadow hiding, are complicated
functions of the particle surface structure and optical properties
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of the grains; these mechanisms are currently topics of extensive
theoretical and laboratory studies (Nelson et al., 2000, 2002; Hapke
et al., 2006, 2009; Shepard and Helfenstein, 2007; Shkuratov et al.,
2007). In contrast, the interparticle shadowing (e.g. Hapke, 1986;
Irvine, 1966) contribution is not sensitive to physical particle prop-
erties, but is primarily determined by the optical depth and volume
filling factor of the ring. In what follows, we will consistently call
this latter effect ‘‘interparticle shadowing,” rather than ‘‘shadow
hiding” or ‘‘mutual shadowing,” in order to avoid any possible mis-
interpretation in terms of shadows associated with roughness of
the surfaces of ring particles.

Classically, the strong and narrow opposition brightening of
Saturn’s rings was interpreted in terms of interparticle shadowing
in a low volume density ring. Near to opposition, the shadow a par-
ticle casts on other particles becomes more and more hidden by
the particle itself. The smaller the volume density, the longer the
average shadow cylinders are before hiding another particle: a
more precise alignment of illumination and viewing is thus needed
for this effect to become important. In particular, Lumme et al.
(1983) calculated the interparticle shadowing contributions for
homogeneous B ring models, and showed that the then-existing
phase curves could be accounted for solely by this effect, provided
that the ring has a low volume density of the order of D � 0.02. This
corresponds in the case of identical particles to a multilayer with a
thickness of several tens of particle diameters. Such a low volume
density seemed to contradict dynamical models (e.g. Araki and Tre-
maine, 1986; Wisdom and Tremaine, 1988; Salo, 1992a) that,
based on the laboratory measurements of the elasticity of ice
(Bridges et al., 1984), predicted that the rings should flatten to a
closely packed near-monolayer state with a thickness of few parti-
cle diameters at most, indicating D > 0.1. For such a large volume
density, a homogeneous ring would have a much wider opposition
effect than the observed brightening. Therefore, Mishchenko and
Dlugach (1992) and Mishchenko (1993) suggested that the bright-
ening is instead due to CB (see also Muinonen et al., 1991).1 Mish-
chenko (1993) also argued that CB is strongly supported by the Lyot
(1929) and Johnson et al. (1980) measurements of negative linear
polarization, whose magnitude drops rapidly within a < 0.5�. Indeed,
during 1990s the CB became accepted as the standard explanation
for Saturn’s rings opposition effect, and the Cassini VIMS observa-
tions have also been interpreted within this framework (Nelson,
2008).

However, the interpretation of the opposition effect solely in
terms of intrinsic brightening has a severe problem: improved
dynamical models of flattened rings do in fact predict a fairly nar-
row interparticle shadowing opposition peak, if a particle size dis-
tribution is taken into account (Salo and Karjalainen, 2003;
hereafter SK2003). This is because, for a fixed D, the effective mean
width of shadow cylinders drops faster than their mean length
when the size distribution is broadened. Photometric simulations
in SK2003 indicate that the effect is well-matched by Hapke
(1986) size distribution models for semi-infinite particle layers.
Interestingly, if the currently favored wide particle size distribu-
tions with width Rmax/Rmin � 100 (Marouf et al., 1983; French
and Nicholson, 2000) are assumed, interparticle shadowing can ac-
count for most of the opposition brightening for a > 0.5�, and even
have a significant contribution for a < 0.5� (SK2003; French et al.,
2007b). Nevertheless, the strong surge near a = 0� and the wave-
length dependence of phase curves (French et al., 2007b) unambig-
uously show the intrinsic contribution to be present. Therefore,
both intrinsic and interparticle shadowing mechanisms are likely
to affect the opposition brightening, although it has been surpris-

ingly difficult to disentangle their contributions to the phase
curves.

In this paper we propose that the intrinsic brightening and inter-
particle shadowing can be reliably separated by a comparison of the
opposition phase curves at different ring opening angles. Namely,
whereas the intrinsic contribution should be the same regardless
of elevation, the interparticle shadowing contribution is expected
to be very sensitive to the viewing elevation. This prediction fol-
lows from dynamical simulations, which indicate a vertically non-
uniform particle distribution. As explored in detail in SK2003, the
width of the modeled interparticle shadowing peak gets narrower
for more shallow illumination, since the reflection will be more
and more dominated by the low volume density upper layers;
see Fig. 1 for an illustration. This B dependence of the effective vol-
ume density should be further augmented by the particle size dis-
tribution, since small particles are expected to have a larger scale
height than the larger particles. Moreover, an extended particle
size distribution will lead to a narrower opposition effect, in accor-
dance with theoretical calculations (Hapke, 1986), although a
broad particle size distribution alone, without vertical structure,
does not imply a B-dependent opposition effect. To test these
expectations, we will utilize the extensive set of UBVRI observa-
tions of Saturn’s rings, obtained with the Hubble Space Telescope’s
WFPC2 (French et al., 2007b).

In order to separate the intrinsic and interparticle contributions,
we will employ a set of dynamical simulation models performed
with different optical depths and widths of the size distribution.
The opposition phase curves are calculated for these models, cov-
ering the range of viewing elevations accessible from the Earth.
We then match the observed elevation angle dependence with
the simulated one, using the common phase curve range
(a = 0.5–6.0�) available for all elevations and filters, and obtain a
set of best-fitting size distributions for the different ring compo-
nents. The known contribution of interparticle shadowing in these
simulation models, for any phase or elevation angle, can then be
extracted from the observed data points, to yield opposition phase
curves representing just the intrinsic contribution. The success of
the extraction procedure can be tested by the requirement that
the remaining intrinsic contribution must depend only on wave-
length and ring location, and not on elevation angle.

An additional test for the importance of interparticle shadowing
is provided by the B ring tilt effect (the reflectivity I/F increases
with elevation by 30% for the ground based geometries), which is
traditionally interpreted as resulting from increased multiple scat-
tering at larger elevation angles (Esposito and Lumme, 1977; Lum-
me et al., 1983). In SK2003, we proposed that the tilt effect can also
arise due to an elevation angle dependent opposition effect: at
large elevations (say, B = 26� as in Fig. 1) the observed brightness
is enhanced by the wide interparticle shadowing opposition peak,
which at smaller elevations (B = 4� in Fig. 1) becomes so narrow
that it is confined inside the typical observation phase angle of
few degrees. The full HST data set, with sufficient B and a coverage,
and excellent photometric accuracy, offers an ideal tool for testing
this hypothesis. As a side result, we also obtain an accurate esti-
mate for the amount of multiple scattering, and thus set con-
straints on the intrinsic ring particle phase function. Note that
Cassini imaging data available to date, though having superior spa-
tial resolution and a broader coverage of phase angles, do not en-
able such a systematic study of the opposition effect at different
elevations.

The plan of the paper is as follows. In Section 2, we compare
HST data at different elevations. We show that the observed phase
curves are steeper at smaller elevation angles, and moreover that
this steepening is independent of wavelength, consistent with
what is expected for an interparticle shadowing effect. In Section
3, we devise a method for extracting the elevation-dependent part

1 The notion of an intrinsic opposition peak originated much earlier; see e.g. Cook
et al., 1973; Hämeen-Anttila and Vaaraniemi, 1975; Irvine et al., 1988.
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of the opposition brightening, utilizing dynamical and photometric
simulations. Section 4 then shows the results of fitting models to
the observations, and discusses the implications for the relative
magnitudes of the intra-particle and interparticle opposition ef-
fects. The intrinsic opposition effect phase curves are also pre-
sented in a tabular form, in terms of parameters for two different
fitting formulas (a linear-exponential fit, and a simplified Hapke
model including both CB and SH). Section 5 discusses the close
interrelation between the interparticle mutual shadowing opposi-
tion effect and the tilt effect, and uses the observed tilt effect at dif-
ferent wavelengths to estimate the amount of multiple scattering.
Section 6 summarizes our conclusions.

2. Elevation angle dependence of HST phase curves

2.1. Previous analysis of HST phase curves

There are two previous studies of the opposition phase curves
based on a subset of the same HST observations used here. In Pou-
let et al. (2002), the HST data obtained during Cycle 7 for 10� ele-
vation angle were fitted with various models for the intrinsic
opposition effect, including the Hapke (1986) shadow hiding mod-
el, the Drossart (1993) fractal phase function, and the Shkuratov
et al. (1999) model combining coherent backscattering and sha-
dow hiding. However, no allowance was made for a possible inter-
particle shadowing contribution, and subsequent HST observations
made it clear that the minimum a � 0.3� in the data utilized by
Poulet et al. (2002) was too large to accurately constrain the
models.

French et al. (2007b) combined the 2005 observations at exact
opposition for �23� elevation with the data from Cycles 10–12 at
comparable elevation (�26�), which allowed for much more accu-
rate fits of the phase curves than Poulet et al. (2002) were able to
obtain. In particular, linear-exponential fits, and fits with the Hap-
ke (2002) shadow hiding/coherent backscattering model, indicated

that the HWHM of the opposition peak varies in the range 0.1–0.2�.
The effect of interparticle shadowing was studied separately, using
Monte Carlo simulations, which indicated that the observed oppo-
sition surge is stronger and narrower than what can be attributed
even to a quite extended particle size distribution (with width
Rmax/Rmin [ 100). Nevertheless, the high-quality near-opposition
phase curves (see Fig. 2 in French et al. (2007b)) give an impression
of possibly two superposed components, the more extended of
which might represent the interparticle contribution.

2.2. HST observations at different elevations

In the current study we use the full HST data set for jBj = 4.5–26�
(see Table 1 in French et al. (2007b)), which has been processed
and calibrated as described in French et al. (2007a). Throughout
our analysis we use the geometrically corrected I/F (Hämeen-Anttila
and Pyykko, 1972; Dones et al., 1993; and Cuzzi et al., 2002), ob-
tained by reducing the observations at slightly different B and B0

(the elevation angles of the Earth and the Sun, respectively) to an
effective common elevation angle Beff:

sin Beff � leff ¼
2ll0

lþ l0
; ð1Þ

where l � jsinBj and l0 � jsinB0j, by

ðI=FÞcorr ¼ ðI=FÞlþ l0

2l0
: ð2Þ

This correction factor is exact for the reflected singly scattered
light2 from a classical many-particle thick ring (volume density
D ? 0), and should hold quite well even when multiple scattering
is included (Lumme, 1970; Price, 1973) or when scattering from a
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Fig. 1. An illustration of the opposition brightening due to reduced interparticle shadowing. A side view of a dynamical simulation model is displayed, together with
opposition phase curves calculated for two different observing elevations. An nS = 3.09 power-law phase function with Bond albedo 0.5 is assumed. The curves display I/
I(D = 0), where I(D = 0) is the theoretical brightness for a classical zero volume density ring. The curves for the single scattering (ss) component and total brightness including
multiple scattering (ss + ms) are shown separately, with solid and dashed lines (for B = 4� the multiply-scattered component is negligible). At large elevation angles (B = 26�)
the light rays are able to penetrate to central layers, where the typical particle separations are comparable to particle size: such a high volume density leads to a broad
opposition brightening curve. On the other hand, at small elevation angles (B = 4�) the reflection happens mainly in the rarefied upper layers, where particle separations are
large compared to their size: such a small effective volume density leads to a much narrower opposition effect.

2 The formula for the singly scattered reflected light is given by Eq. (6) in Section
3.1. When the correction factor is applied to single scattering, lþl0

2l0 � ðI=FÞssðl;l0Þ ¼
AP
8 ð1� expð�2s=leff ÞÞ, which equals (I/F)ss(l = l0 = leff) for all values of s.
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realistic geometrically thin particle disk is considered. Inclusion of
this geometric correction is very important in our case, where obser-
vations from different elevation angles are compared with each
other. For large a there can be significant differences in B and B0,
and the correction factor lþl0

2l0 may amount to as much as 20% for
low elevation observations. If uncorrected, this spurious effect of
variable observing geometries would easily overwhelm the true ele-
vation angle dependence of ring brightness. During a single HST Cy-
cle, Beff is more or less constant (within a few tenths of degree)
although B and B0 may vary by a few degrees (see Table 1 in French
et al. (2007a); Fig. 1 in French et al. (2007b)). This will allow us to
group together all data from each individual HST Cycle. In what fol-
lows, we will omit the subscript and denote the geometrically cor-
rected observed brightnesses simply as I/F.

To illustrate that a clear elevation angle dependent contribution
is indeed present in the full HST data set, Fig. 2 compares the radial
I/F profiles at large elevation (Beff � 23�) with those at Beff = 4.5�,
which is the lowest elevation angle for which observations are
available. The solid lines indicate observations at phase angles
close to 6�, 2�, and 0.5�. Indeed, for Beff = 4.5� the relative brighten-
ing as a decreases is clearly stronger. For example, the typical B
ring I/F is enhanced by about 25% when a decreases from 6� to
2� for Beff = 4.5�, but only by about 15% for Beff = 23� (Fig. 3). A sim-
ilar increase is seen between a � 2� and�0.5�. The fact that the rel-
ative enhancement increases for lower B is qualitatively in
agreement with the interparticle shadowing example of Fig. 1; in
Section 3 we will make a more detailed comparison to our Monte
Carlo models, after first characterizing the elevation angle depen-
dence of the observations. The figure also shows the I/F profile
for B = 22.9�, obtained at exact opposition (French et al., 2007b),
illustrating that a major part of the opposition brightening takes
place inside a � 0.5�.

The magnitude of opposition brightening and its dependence on
elevation (at least for the broader component outside a = 0.5�) are
fairly similar for the C ring in comparison to the optically much
denser B and A rings (see Fig. 3). At first glance, this might appear
to contradict the importance of interparticle shadowing, which is
expected to be very sensitive to s. Nevertheless, there seems to
be a positive correlation between brightness increase and the local

optical depth, as required if at least part of the brightening is due to
reduced interparticle shadowing. A similar correlation between the
slope of the phase curve at Beff � 26� and the C ring optical depth
was discussed in French et al. (2007b).

In French et al. (2007b), the high elevation angle data set (Cycles
10–13) was analyzed in detail for three ring regions: a = 78,000–
83,000 km (the C ring; this region excludes most prominent ring-
lets and plateaus), a = 100,000–107,000 km (the B ring), and
a = 127,000–129,000 km (the A ring; this is the region where the
azimuthal brightness asymmetry is strongest).

Since the data covered phase angles near to zero, it was possible
to fit various detailed backscattering models to the phase curves. In
particular, besides the physically-motivated Hapke (2002) models,
it was shown that the data are quite well described by an empirical
linear-exponential model

IðaÞ
F
¼ a0 expð�a=d0Þ þ b0 þ k0a; ð3Þ

commonly used for fitting of satellite and asteroid near-opposition
phase curves (Kaasalainen et al., 2003). The parameters a0 and d0 de-
scribe the amplitude and width of the narrow opposition peak,
while b0 and k0 give the background intensity and linear slope of
the phase curve. The half-width at half-maximum for the exponen-
tial component is HWHM = d0ln2. In French et al. (2007b) a detailed
analysis of the model parameters was presented as a function of
ring location and wavelength.

Unfortunately, at the smaller elevation angles, the HST data are
too sparse to allow such a four-parameter fit (or a Hapke fit with
seven parameters). The data we use, in addition to those shown
in Tables 2–4 in French et al. (2007b), are listed in Tables 1–3, rep-
resenting measurements of average geometrically corrected I/F
from Cycles 6–9 for the three ring regions (C, B, A) defined above.
In some cases, there are measurements for only 3–4 distinct phase
angles. Fig. 4 collects the phase curves for six sets of elevation an-
gles, with the mean effective values of Beff = 4.5�, 10.2�, 15.4�, 20.1�,
23.6�, and 26.1� (Cycles 6, 7a, 7b, 8, 9 + 13, and 10 � 12, respec-
tively). The curves are normalized to I/F at a = 6�, and the two
most-widely separated filters, F336W and F814W, are shown. For
the lowest elevation angle, only two B ring phase angle data points
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Fig. 2. Examples of the ansa I/F profiles for Beff = 4.5� (left) and for Beff = 23.5� (right). Solid lines collect the observations in F555W filter close to common phase angles a � 6�,
�2�, and �0.5�. The almost overlapping curves correspond to profiles extracted from adjacent east/west ansa images: note that for Beff = 4.5� the images for the two lowest
phase angles had spokes in the east ansa (McGhee et al., 2005), affecting the mid B ring profiles (the affected portions of these images are omitted from all subsequent
analyses). At right, the profile at exact opposition is also shown (for B = 22.9�). Here, as in all the subsequent plots, the corrected I/F is shown, compensating for the small
differences in B and B0 during each subset of observations.
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are available for the F336W filter, due to the contamination of
images by B ring spokes. Also shown in the plot are two-parameter
log-linear fits of the form

IðaÞ
F
¼ a lnaþ b: ð4Þ

These fits were also used in the normalization of the data to a
common phase angle a = 6� in Fig. 4. In order to assure a uniform
coverage of phase angles at different elevations, the fits were made
restricting to values a > 0.25�. Such simple fits seem to match the
data quite well. Nevertheless, for the most extensive data sets
(Beff = 26.1�, 23.6�) it is evident that a steeper logarithmic slope
would be appropriate for a < 0.5�, justifying the use of more com-
plicated fitting formulae when sufficient data are available. Note
that the log-linear intensity fitting formula is in practice almost
indistinguishable from the log-linear magnitude fits utilized by
Lumme et al. (1983) and Bobrov (1970).

Concentrating on the wider regime a > 0.5�, Fig. 4 suggests that
the enhanced opposition brightening at smaller elevations is well
captured by the log-linear fits. A systematic increase of the loga-
rithmic slope with decreasing Beff is seen in all filters for all ring re-
gions. This is most clearly seen in Fig. 5, which compares the
observations at different elevation angles for the F555W filter.
The values of the parameters a and b, for different filters and ring
regions, are listed in Table 4.

In order to further characterize the elevation angle dependence
of opposition effect, and to separate the intrinsic and interparticle
contribution, we turn to modeling in the next section.

3. Disentangling the mutual interparticle shadowing and intra-
particle contributions

3.1. Mathematical formulation

We assume that the intensity at phase angle a, effective eleva-
tion angle Beff, normal optical depth s, and wavelength k, can be
written in the form

ðI=FÞða;Beff ; s; kÞ ¼ ½fiða; kÞfeða; Beff ; sÞ þ Q msðBeff ; s; kÞ�
� ðI=FÞssða;Beff ; s; kÞ; ð5Þ

where fi denotes the intrinsic (e.g. due to coherent backscattering
and/or shadow hiding at the particles’ surfaces) and fe the external
(due to reduced interparticle mutual shadowing) contribution to
the opposition brightening of the singly scattered radiation, Qms is
the fractional contribution of multiple scattering, and (I/F)ss is the
theoretical single scattering intensity of reflected light,

ðI=FÞss ¼
AðkÞPða; kÞl0

4ðlþ l0Þ 1� exp �s 1
l
þ 1

l0

� �� �� �
; ð6Þ

where A is the (possibly wavelength-dependent) Bond albedo of the
particles and P is the particle phase function.3 For a classical, zero
volume density ring there is no interparticle shadowing, and thus
fe = 1. Likewise, fi = 1 corresponds to the absence of an intrinsic oppo-
sition peak; the theoretical maxima for each of these factors is 2.
Note that here Qms includes just the interparticle multiple scatter-
ings, not the possible multiple reflection events at the particle sur-
face, thought to be responsible for the coherent backscattering
effect. Our goal is to separate the intrinsic and external contributions
fi and fe. Note that our Eqs. (5) and (6) assume that the ring can be
described by a single uniform optical depth, whereas the actual rings
are known to possess local density variations due to self-gravity
wakes (Colwell et al., 2006, 2007; Hedman et al., 2007). Besides such
local variations, the resolution element of HST observations is so
large that it includes a superposition of different optical depths,
due to large scale radial structure of rings. Because of this, all the
parameters in the equations, including s, fi, and fe, must be consid-
ered as effective mean values.

In what follows we assume that fi depends on wavelength but
is independent of Beff or s. On the other hand, fe is independent
of wavelength, but is likely to depend on both Beff and s. The
multiply-scattered contribution vanishes for s ? 0 and for
Beff ? 0; in general its contribution is expected to be small for
all Earth-based geometries (Cuzzi et al., 2002). We shall there-
fore ignore Qms in this section, an approximation that is justified
in Section 5.
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Fig. 3. Same as Fig. 2, except that the profiles have been divided by that at a � 6�. Comparison of the two opening angles illustrates a clear elevation angle dependence in the
magnitude of relative opposition brightening (at least for the common interval 0.5� < a < 6�).

3 The separation of particle’s intrinsic opposition brightening and its phase function
is somewhat arbitrary; here, the phase function P(a,k) stands for the overall angular
distribution of the scattered radiation due to surface topography and illumination.
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Table 1
C ring: 78,000–83,000 km.

F336W F439W F555W F675W F814W

a I/Fcorr a I/Fcorr a I/Fcorr a I/Fcorr a I/Fcorr

Cycle 6 jBeffj = 4.30–4.66�
0.4605 0.1235 0.4607 0.1514 0.4609 0.1680 0.4611 0.1840 0.4613 0.1962
1.9249 0.0955 0.4617 0.1524 0.4619 0.1692 0.4621 0.1860 1.9257 0.1554
1.9315 0.0966 1.9251 0.1201 1.9253 0.1319 1.9255 0.1489 5.6708 0.1322
5.6705 0.0780 1.9318 0.1198 1.9320 0.1367 5.6709 0.1230 – –
5.6711 0.0774 5.6704 0.0980 5.6704 0.1104 – – – –
– – 5.6710 0.0973 5.6709 0.1107 – – – –

Cycle 7a jBeffj = 10.01–10.29�
0.2997 0.0880 0.2998 0.1108 0.2998 0.1204 0.2998 0.1351 0.2999 0.1377
0.3000 0.0879 0.3000 0.1109 0.3000 0.1209 0.3000 0.1311 0.3001 0.1385
0.4948 0.0818 0.4946 0.1027 0.4944 0.1115 0.4943 0.1210 0.4941 0.1274
0.4958 0.0811 0.4956 0.1016 0.4954 0.1094 0.4952 0.1209 0.4951 0.1260
0.9774 0.0733 0.4957 0.1014 0.9770 0.1014 0.9767 0.1099 0.9765 0.1169
0.9843 0.0717 0.9772 0.0930 0.9837 0.0985 0.9834 0.1087 0.9832 0.1132
1.9911 0.0650 0.9839 0.0911 1.9906 0.0905 1.9904 0.0999 1.9901 0.1043
1.9979 0.0645 0.9840 0.0910 1.9975 0.0893 1.9972 0.0992 1.9970 0.1027
6.0165 0.0554 1.9908 0.0831 6.0165 0.0790 6.0165 0.0858 6.0165 0.0903
6.0168 0.0546 1.9977 0.0818 6.0168 0.0779 6.0168 0.0862 6.0169 0.0893
– – 6.0165 0.0717 – – – – – –
– – 6.0165 0.0714 – – – – – –
– – 6.0165 0.0716 – – – – – –
– – 6.0165 0.0714 – – – – – –
– – 6.0168 0.0706 – – – – – –

Cycle 7b jBeffj = 15.40–15.49�
0.3156 0.0659 0.3156 0.0825 0.3158 0.0885 0.3158 0.0975 0.3159 0.1016
0.3160 0.0661 0.3157 0.0830 0.3162 0.0890 0.3163 0.0957 0.3164 0.1022
0.6866 0.0586 0.3161 0.0826 0.6861 0.0798 0.6859 0.0878 0.6857 0.0914
0.6927 0.0575 0.6864 0.0747 0.6923 0.0777 0.6921 0.0841 0.6918 0.0903
1.1982 0.0533 0.6925 0.0718 1.1978 0.0724 1.1975 0.0784 1.1973 0.0846
1.2042 0.0537 1.1980 0.0672 1.2034 0.0737 1.2031 0.0800 1.2029 0.0853
6.2567 0.0417 1.2036 0.0687 6.2567 0.0589 6.2566 0.0656 6.2566 0.0684
6.2568 0.0407 1.2038 0.0687 6.2567 0.0576 6.2567 0.0636 6.2567 0.0676
– – 1.2039 0.0687 – – – – – –
– – 6.2567 0.0545 – – – – – –
– – 6.2567 0.0530 – – – – – –

Cycle 8 jBeffj = 20.05–20.17�
0.2956 0.0542 0.2957 0.0682 0.2958 0.0718 0.2959 0.0790 0.2959 0.0826
0.2971 0.0544 0.2957 0.0680 0.2958 0.0727 0.2973 0.0795 0.2973 0.0848
0.4244 0.0523 0.2957 0.0681 0.2958 0.0725 0.4233 0.0771 0.4231 0.0806
0.4257 0.0506 0.2972 0.0693 0.2972 0.0738 0.4251 0.0741 0.4249 0.0776
6.1038 0.0346 0.4240 0.0664 0.4235 0.0702 6.1037 0.0534 6.1036 0.0580
6.1052 0.0340 0.4241 0.0662 0.4236 0.0707 6.1049 0.0527 6.1049 0.0562
– – 0.4242 0.0666 0.4238 0.0700 – – – –
– – 0.4255 0.0643 0.4253 0.0675 – – – –
– – 6.1038 0.0455 6.1037 0.0494 – – – –
– – 6.1051 0.0444 6.1050 0.0474 – – – –
– – 6.1051 0.0442 6.1050 0.0475 – – – –
– – 6.1052 0.0443 6.1050 0.0471 – – – –

Cycle 9 jBeffj = 23.54–23.69�
0.2681 0.0487 0.2682 0.0622 0.2683 0.0657 0.2684 0.0710 0.2685 0.0746
0.2702 0.0488 0.2682 0.0620 0.2684 0.0651 0.2705 0.0706 0.2706 0.0744
0.5852 0.0443 0.2703 0.0617 0.2704 0.0649 0.5862 0.0655 0.5864 0.0688
0.5870 0.0437 0.2703 0.0617 0.2704 0.0644 0.5880 0.0640 0.5882 0.0678
1.9914 0.0369 0.5854 0.0565 0.5858 0.0604 1.9925 0.0562 1.9929 0.0602
1.9915 0.0368 0.5856 0.0565 0.5860 0.0594 1.9927 0.0556 6.0951 0.0514
6.0947 0.0313 0.5873 0.0558 0.5876 0.0590 6.0950 0.0472 6.0954 0.0531
6.0952 0.0319 0.5874 0.0557 0.5878 0.0582 6.0954 0.0501 – –
– – 1.9918 0.0483 1.9922 0.0515 – – – –
– – 1.9919 0.0479 1.9923 0.0509 – – – –
– – 6.0948 0.0407 6.0949 0.0434 – – – –
– – 6.0948 0.0405 6.0949 0.0429 – – – –
– – 6.0948 0.0405 6.0950 0.0434 – – – –
– – 6.0953 0.0419 6.0953 0.0449 – – – –
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Table 2
B ring: 100,000–107,000 km.

F336W F439W F555W F675W F814W

a I/Fcorr a I/Fcorr a I/Fcorr a I/Fcorr a I/Fcorr

Cycle 6 jBeffj = 4.30–4.66�
0.4605 0.2681 0.4607 0.4421 0.4609 0.5588 0.4611 0.6222 0.4613 0.6515
1.9249 0.1875 0.4617 0.4432 0.4619 0.5592 0.4621 0.6207 1.9257 0.5055
1.9315 0.2043 1.9251 0.3298 1.9253 0.4261 1.9255 0.4948 5.6708 0.4406
5.6705 0.1595 1.9318 0.3595 1.9320 0.4640 5.6709 0.4211 – –
5.6711 0.1601 5.6704 0.2875 5.6704 0.3737 – – – –
– – 5.6710 0.2862 5.6709 0.3740 – – – –

Cycle 7a jBeffj = 10.01–10.29�
0.2997 0.2904 0.2998 0.4820 0.2998 0.6062 0.2998 0.6760 0.2999 0.7053
0.3000 0.2932 0.3000 0.4845 0.3000 0.6087 0.3000 0.6795 0.3001 0.7071
0.4948 0.2735 0.4946 0.4597 0.4944 0.5813 0.4943 0.6507 0.4941 0.6734
0.4958 0.2774 0.4956 0.4650 0.4954 0.5794 0.4952 0.6590 0.4951 0.6701
0.9774 0.2497 0.4957 0.4652 0.9770 0.5447 0.9767 0.6118 0.9765 0.6351
0.9843 0.2523 0.9772 0.4263 0.9837 0.5474 0.9834 0.6261 0.9832 0.6359
1.9911 0.2249 0.9839 0.4331 1.9906 0.5028 1.9904 0.5775 1.9901 0.5874
1.9979 0.2246 0.9840 0.4326 1.9975 0.5059 1.9972 0.5821 1.9970 0.5908
6.0165 0.1768 1.9908 0.3935 6.0165 0.4227 6.0165 0.4789 6.0165 0.4988
6.0168 0.1785 1.9977 0.3965 6.0168 0.4221 6.0168 0.4881 6.0169 0.4963
– – 6.0165 0.3228 – – – – – –
– – 6.0165 0.3223 – – – – – –
– – 6.0165 0.3228 – – – – – –
– – 6.0165 0.3218 – – – – – –
– – 6.0168 0.3255 – – – – – –

Cycle 7b jBeffj = 15.40–15.49�
0.3156 0.2935 0.3156 0.4891 0.3158 0.6099 0.3158 0.6928 0.3159 0.7053
0.3160 0.2947 0.3157 0.4890 0.3162 0.6153 0.3163 0.6863 0.3164 0.7118
0.6866 0.2661 0.3161 0.4895 0.6861 0.5673 0.6859 0.6475 0.6857 0.6582
0.6927 0.2672 0.6864 0.4508 0.6923 0.5756 0.6921 0.6427 0.6918 0.6672
1.1982 0.2469 0.6925 0.4545 1.1978 0.5495 1.1975 0.6175 1.1973 0.6417
1.2042 0.2426 1.1980 0.4288 1.2034 0.5440 1.2031 0.6129 1.2029 0.6368
6.2567 0.1867 1.2036 0.4223 6.2567 0.4405 6.2566 0.5088 6.2566 0.5189
6.2568 0.1862 1.2038 0.4217 6.2567 0.4441 6.2567 0.5139 6.2567 0.5231
– – 1.2039 0.4216 – – – – – –
– – 6.2567 0.3381 – – – – – –
– – 6.2567 0.3419 – – – – – –

Cycle 8 jBeffj = 20.05–20.17�
0.2956 0.2971 0.2957 0.4951 0.2958 0.6180 0.2959 0.7049 0.2959 0.7174
0.2971 0.2968 0.2957 0.4940 0.2958 0.6241 0.2973 0.6932 0.2973 0.7214
0.4244 0.2814 0.2957 0.4951 0.2958 0.6183 0.4233 0.6774 0.4231 0.6886
0.4257 0.2818 0.2972 0.4924 0.2972 0.6201 0.4251 0.6785 0.4249 0.6899
6.1038 0.1890 0.4240 0.4731 0.4235 0.5935 6.1037 0.5202 6.1036 0.5417
6.1052 0.1899 0.4241 0.4725 0.4236 0.5995 6.1049 0.5300 6.1049 0.5402
– – 0.4242 0.4727 0.4238 0.5940 – – – –
– – 0.4255 0.4752 0.4253 0.5957 – – – –
– – 6.1038 0.3459 6.1037 0.4568 – – – –
– – 6.1051 0.3496 6.1050 0.4561 – – – –
– – 6.1051 0.3493 6.1050 0.4606 – – – –
– – 6.1052 0.3494 6.1050 0.4563 – – – –

Cycle 9 jBeffj = 23.54–23.69�
0.2681 0.2992 0.2682 0.4980 0.2683 0.6286 0.2684 0.7115 0.2685 0.7241
0.2702 0.2991 0.2682 0.4974 0.2684 0.6223 0.2705 0.7090 0.2706 0.7229
0.5852 0.2706 0.2703 0.4970 0.2704 0.6261 0.5862 0.6644 0.5864 0.6751
0.5870 0.2702 0.2703 0.4961 0.2704 0.6212 0.5880 0.6665 0.5882 0.6779
1.9914 0.2286 0.5854 0.4588 0.5858 0.5847 1.9925 0.6038 1.9929 0.6219
1.9915 0.2288 0.5856 0.4583 0.5860 0.5781 1.9927 0.5970 6.0951 0.5538
6.0947 0.1929 0.5873 0.4590 0.5876 0.5868 6.0950 0.5318 6.0954 0.5438
6.0952 0.1928 0.5874 0.4591 0.5878 0.5804 6.0954 0.5341 – –
– – 1.9918 0.4068 1.9922 0.5277 – – – –
– – 1.9919 0.4061 1.9923 0.5229 – – – –
– – 6.0948 0.3531 6.0949 0.4669 – – – –
– – 6.0948 0.3538 6.0949 0.4622 – – – –
– – 6.0948 0.3531 6.0950 0.4664 – – – –
– – 6.0953 0.3493 6.0953 0.4578 – – – –
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Table 3
A ring: 127,000–129,000 km.

F336W F439W F555W F675W F814W
a I/Fcorr a I/Fcorr a I/Fcorr a I/Fcorr a I/Fcorr

Cycle 6 jBeffj = 4.30–4.66�
0.4605 0.2768 0.4607 0.4358 0.4609 0.5275 0.4611 0.5746 0.4613 0.6017
1.9249 0.2126 0.4617 0.4409 0.4619 0.5300 0.4621 0.5769 1.9257 0.4918
1.9315 0.2100 1.9251 0.3497 1.9253 0.4247 1.9255 0.4806 5.6708 0.3935
5.6705 0.1600 1.9318 0.3512 1.9320 0.4326 5.6709 0.3755 – –
5.6711 0.1609 5.6704 0.2772 5.6704 0.3396 – – – –
– – 5.6710 0.2733 5.6709 0.3405 – – – –

Cycle 7a jBeffj = 10.01–10.29�
0.2997 0.2594 0.2998 0.4071 0.2998 0.4943 0.2998 0.5417 0.2999 0.5658
0.3000 0.2592 0.3000 0.4057 0.3000 0.4891 0.3000 0.5375 0.3001 0.5601
0.4948 0.2436 0.4946 0.3832 0.4944 0.4652 0.4943 0.5116 0.4941 0.5339
0.4958 0.2446 0.4956 0.3883 0.4954 0.4676 0.4952 0.5218 0.4951 0.5301
0.9774 0.2202 0.4957 0.3883 0.9770 0.4366 0.9767 0.4796 0.9765 0.4993
0.9843 0.2247 0.9772 0.3544 0.9837 0.4375 0.9834 0.4886 0.9832 0.4998
1.9911 0.1976 0.9839 0.3603 1.9906 0.3993 1.9904 0.4490 1.9901 0.4596
1.9979 0.1994 0.9840 0.3600 1.9975 0.4033 1.9972 0.4533 1.9970 0.4636
6.0165 0.1516 1.9908 0.3239 6.0165 0.3278 6.0165 0.3622 6.0165 0.3789
6.0168 0.1530 1.9977 0.3303 6.0168 0.3271 6.0168 0.3705 6.0169 0.3790
– – 6.0165 0.2590 – – – – – –
– – 6.0165 0.2590 – – – – – –
– – 6.0165 0.2594 – – – – – –
– – 6.0165 0.2582 – – – – – –
– – 6.0168 0.2631 – – – – – –

Cycle 7b jBeffj = 15.40–15.49�
0.3156 0.2369 0.3156 0.3697 0.3158 0.4442 0.3158 0.4940 0.3159 0.5037
0.3160 0.2382 0.3157 0.3702 0.3162 0.4486 0.3163 0.4898 0.3164 0.5105
0.6866 0.2129 0.3161 0.3711 0.6861 0.4081 0.6859 0.4540 0.6857 0.4638
0.6927 0.2146 0.6864 0.3371 0.6923 0.4175 0.6921 0.4554 0.6918 0.4709
1.1982 0.1965 0.6925 0.3435 1.1978 0.3942 1.1975 0.4335 1.1973 0.4513
1.2042 0.1944 1.1980 0.3214 1.2034 0.3897 1.2031 0.4296 1.2029 0.4469
6.2567 0.1470 1.2036 0.3154 6.2567 0.3128 6.2566 0.3538 6.2566 0.3620
6.2568 0.1497 1.2038 0.3158 6.2567 0.3176 6.2567 0.3602 6.2567 0.3669
– – 1.2039 0.3158 – – – – – –
– – 6.2567 0.2497 – – – – – –
– – 6.2567 0.2550 – – – – – –

Cycle 8 jBeffj = 20.05–20.17�
0.2956 0.2253 0.2957 0.3505 0.2958 0.4209 0.2959 0.4713 0.2959 0.4798
0.2971 0.2233 0.2957 0.3506 0.2958 0.4249 0.2973 0.4600 0.2973 0.4795
0.4244 0.2125 0.2957 0.3504 0.2958 0.4213 0.4233 0.4481 0.4231 0.4558
0.4257 0.2132 0.2972 0.3491 0.2972 0.4203 0.4251 0.4533 0.4249 0.4598
6.1038 0.1402 0.4240 0.3335 0.4235 0.4015 6.1037 0.3382 6.1036 0.3518
6.1052 0.1437 0.4241 0.3333 0.4236 0.4043 6.1049 0.3480 6.1049 0.3567
– – 0.4242 0.3331 0.4238 0.4014 – – – –
– – 0.4255 0.3375 0.4253 0.4054 – – – –
– – 6.1038 0.2409 6.1037 0.3041 – – – –
– – 6.1051 0.2466 6.1050 0.3068 – – – –
– – 6.1051 0.2455 6.1050 0.3097 – – – –
– – 6.1052 0.2461 6.1050 0.3069 – – – –

Cycle 9 jBeffj = 23.54–23.69�
0.2681 0.2199 0.2682 0.3414 0.2683 0.4118 0.2684 0.4572 0.2685 0.4671
0.2702 0.2200 0.2682 0.3412 0.2684 0.4083 0.2705 0.4571 0.2706 0.4669
0.5852 0.1976 0.2703 0.3424 0.2704 0.4130 0.5862 0.4241 0.5864 0.4318
0.5870 0.1950 0.2703 0.3418 0.2704 0.4099 0.5880 0.4189 0.5882 0.4285
1.9914 0.1665 0.5854 0.3129 0.5858 0.3827 1.9925 0.3788 1.9929 0.3908
1.9915 0.1667 0.5856 0.3125 0.5860 0.3772 1.9927 0.3743 6.0951 0.3473
6.0947 0.1381 0.5873 0.3107 0.5876 0.3786 6.0950 0.3329 6.0954 0.3394
6.0952 0.1378 0.5874 0.3098 0.5878 0.3743 6.0954 0.3323 – –
– – 1.9918 0.2732 1.9922 0.3395 – – – –
– – 1.9919 0.2730 1.9923 0.3360 – – – –
– – 6.0948 0.2372 6.0949 0.2992 – – – –
– – 6.0948 0.2375 6.0949 0.2966 – – – –
– – 6.0948 0.2369 6.0950 0.2989 – – – –
– – 6.0953 0.2334 6.0953 0.2924 – – – –
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Fig. 4. Opposition phase curves of different ring regions at different elevation angles, with I/F normalized to that at a = 6�. The C ring (upper row), the B ring (middle) and the
A ring (lower) regions are the same as those studied in French et al. (2007b). From left to right the elevation angle increases from Beff = 4.5� to 26.1�. Curves for two different
filters are shown, F336W and F814W. The lines indicate log-linear fits of the form I/F = alna + b, obtained using values for a > 0.25�. Also shown are the residuals of the fits
(deviation of small symbols from unity). This fit range, excluding the near to opposition data points, was chosen in order to give a similar coverage of phase angles for all
elevations: note that for Beff = 23.6� there are additional small a measurements falling outside the fitted range.
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Fig. 5. Phase curves for the C, B, and A ring regions in the F555W filter, with the data from different elevation angles collected in each frame. The lines indicate the log-linear
fits obtained using data values with a > 0.25� (same as in Fig. 4 for F336W and F814W filters).
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Assuming Qms = 0, the fractional brightness increase (denoted
by OE) in some interval amax ? amin can be written as

OEðBeff ; s; kÞ ¼
Iðamin;Beff ; s; kÞ
Iðamax;Beff ; s; kÞ

� fiðamin; kÞfeðamin;Beff ; sÞPðamin; kÞ
fiðamax; kÞfeðamax;Beff ; sÞPðamax; kÞ

¼ OEiðkÞOEeðBeff ; sÞ
Pðamin; kÞ
Pðamax; kÞ

; ð7Þ

where we have denoted OEi � fi(amin)/fi(amax) and OEe � fe(amin)/
fe(amax). To eliminate the intrinsic brightening and the contribution
from the particle phase function, we normalize OE by its value at
some fixed elevation Beff = Bnorm. This ratio contains only the exter-
nal contribution,

OEðBeff ; s; kÞ
OEðBnorm; s; kÞ

¼ OEeðBeff ; s; kÞ
OEeðBnorm; s; kÞ

; ð8Þ

since the interparticle shadowing contribution fe is the only factor
that depends on Beff.

In Fig. 6 we show the observed brightness enhancement OEobs

as a function of elevation angle, for the previously defined C, B,
and A ring regions. The range amax = 6� and amin = 0.5� is chosen,
as the brightening in this range is likely to be due to the interpar-
ticle mutual shadowing effect, rather than the more narrow intrin-
sic opposition peak. For this range of phase angles, the log-linear
fits of the previous section fits can be used with good accuracy,
so that

OEobs � Ið0:5�Þ=Ið6:0�Þ ¼ a ln 0:5þ b
a ln 6:0þ b

; ð9Þ

where a and b are the fit parameters in Eq. (4). As seen in Fig. 6
(upper row; see also Table 5), the typical values of OEobs for the C,
B, and A ring regions are 1.25–1.4 for Beff = 26.1�, increasing to
1.5–1.75 for Beff = 4.5�. To show that an interparticle shadowing
contribution is indeed present, the lower row in Fig. 6 shows OEobs

normalized to that at Beff = 26.1�. If we assume, as in Eq. (8), that the
intrinsic contribution is independent of B, the effect seen in the low-
er row must be due solely to the dependence of interparticle mutual
shadowing on the opening angle. For the A and B ring regions the

ratio OEobs(4.5�)/OEobs(26.1�) is about 1.2, and about 1.1 for the C
ring region. That we are seeing an interparticle shadowing effect
is further supported by the fact that the ratio OEobs/OEobs(26.1�) is
similar for all filters, as it should be if it arises from interparticle
shadowing. It also supports the assumption that multiple scattering
Qms is insignificant. That is, a significant multiple scattering contri-
bution would make the shape of the curves depend on the filter,
since the particle albedo increases toward longer optical
wavelengths.4

Similarly, to eliminate the interparticle shadowing contribution
to OE we may normalize by its value at wavelength k = knorm,

OEðBeff ; s; kÞ
OEðBeff ; s; knormÞ

¼ OEiðkÞ
OEiðknormÞ

Pðamin; kÞ=Pðamin; knormÞ
Pðamax; kÞ=Pðamax; knormÞ

: ð10Þ

Here, the first multiplier describes the wavelength-dependent
difference in the intrinsic opposition brightening, while the second
factor describes the change in the color P(k)/P(knorm) between amax

and amin; these are written separately, since the color change (Cuz-
zi et al., 2002) might appear over a wider angular range than the
narrow intrinsic brightening peak. Since the intrinsic particle
behavior should not depend on opening angle, the above ratio
should be independent of Beff, as is also verified by HST data.

In order to determine the actual interparticle mutual shadowing
contribution to the opposition brightening as a function of a, and
not merely its relative contribution via OEobs/OEobs(26.1�), we use
simulation modeling in the next sub-section.

3.2. Monte Carlo simulation method

Our photometric calculations are carried out with the method
developed in SK2003 and in Salo et al. (2004), based on following

Table 4
Log-linear fits to normalized HST phase curves.a

F336W F439W F555W F675W F814W

Beff a b a b a b a b a b

C ring 78,000–83,000 km
26.1 �0.0048 0.0377 �0.0060 0.0491 �0.0061 0.0521 �0.0063 0.0561 �0.0067 0.0606
23.6 �0.0055 0.0412 �0.0067 0.0529 �0.0068 0.0559 �0.0071 0.0612 �0.0071 0.0650
20.1 �0.0066 0.0461 �0.0079 0.0589 �0.0082 0.0627 �0.0086 0.0685 �0.0086 0.0725
15.4 �0.0082 0.0557 �0.0097 0.0707 �0.0100 0.0759 �0.0105 0.0829 �0.0112 0.0878
10.2 �0.0110 0.0736 �0.0127 0.0932 �0.0139 0.1015 �0.0153 0.1115 �0.0159 0.1164

4.5 �0.0182 0.1088 �0.0217 0.1348 �0.0232 0.1503 �0.0248 0.1657 �0.0257 0.1751

B ring 100,000–107,000 km
26.1 �0.0321 0.2488 �0.0451 0.4337 �0.0501 0.5594 �0.0527 0.6317 �0.0550 0.6564
23.6 �0.0340 0.2533 �0.0460 0.4359 �0.0513 0.5568 �0.0564 0.6365 �0.0551 0.6505
20.1 �0.0352 0.2529 �0.0476 0.4345 �0.0530 0.5531 �0.0574 0.6290 �0.0577 0.6448
15.4 �0.0361 0.2524 �0.0501 0.4325 �0.0573 0.5503 �0.0599 0.6227 �0.0630 0.6406
10.2 �0.0380 0.2484 �0.0548 0.4247 �0.0611 0.5389 �0.0640 0.6101 �0.0684 0.6276

4.5 �0.0424 0.2299 �0.0624 0.3917 �0.0741 0.4993 �0.0811 0.5568 �0.0850 0.5784

A ring 127,000–129,000 km
26.1 �0.0243 0.1781 �0.0325 0.2885 �0.0356 0.3562 �0.0363 0.3921 �0.0379 0.4076
23.6 �0.0260 0.1844 �0.0334 0.2961 �0.0361 0.3616 �0.0394 0.4034 �0.0388 0.4137
20.1 �0.0270 0.1907 �0.0344 0.3067 �0.0373 0.3740 �0.0405 0.4162 �0.0405 0.4270
15.4 �0.0299 0.2024 �0.0396 0.3248 �0.0440 0.3970 �0.0450 0.4393 �0.0474 0.4528
10.2 �0.0355 0.2193 �0.0499 0.3526 �0.0539 0.4308 �0.0568 0.4779 �0.0600 0.4937

4.5 �0.0464 0.2413 �0.0648 0.3896 �0.0749 0.4729 �0.0779 0.5183 �0.0827 0.5402

a a and b are the fit parameters in IðaÞ
F ¼ a ln aþ b (Eq. (4); phase angle a expressed in degrees, natural logarithm).

4 With the inclusion of multiple scattering, Eq. (7) is modified to
OEobsðBeff Þ ¼ f ð0:5� ;Beff ÞþQms ðBeff Þ

f ð6� ;Beff ÞþQmsðBeff Þ
Pð0:5� Þ
Pð6� Þ , where f(a,Beff) � fi(a,k)fe(a,Beff,s). Assuming that

Qms	 f for all Beff, we may approximate OEobs(Beff)/OE(Beff) = 1 + Qms(Beff)[1/
f(0.5�, Beff)–1/f(6�,Beff)], where OE in the denominator includes just the singly
scattered component as in Eq. (7). Assuming that Qms(4.5�)	 Qms(26.1�), we may
further approximate OEobs(4.5�)/OEobs(26.1�) � OE(4.5�)/OE(26.1�)(1 + Qms(26�)(1/
f(6�,26.1�)–1/f(0.5�,26.1�)). Since f(0.5�) > f(6�), the prefactor of Qms is positive. This
implies that significant multiple scattering would make the curves in the lower row of
Fig. 6 steeper in the red filter than in the blue filter, since Qms(red) > Qms(blue).
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Fig. 6. The wide component of the opposition brightening measured in terms of OE = I(0.5�)/I(6�), obtained from log-linear fits. The upper row shows OE as a function of Beff

for the three studied C, B, and A ring regions, for three different filters. In the lower row, OE has been normalized to that at Beff = 26.1�.

Table 5
Log-linear fits to HST phase curves: the derived parameters.a

F336W F439W F555W F675W F814W

Beff OE I/F(6�) OE I/F(6�) OE I/F(6�) OE I/F(6�) OE I/F (6�)

C ring 78,000–83,000 km
26.1 1.4125 0.0291 1.3869 0.0384 1.3696 0.0412 1.3467 0.0449 1.3436 0.0485
23.6 1.4386 0.0313 1.4070 0.0409 1.3862 0.0437 1.3640 0.0485 1.3359 0.0523
20.1 1.4741 0.0344 1.4390 0.0448 1.4238 0.0480 1.4018 0.0531 1.3732 0.0572
15.4 1.4945 0.0410 1.4495 0.0534 1.4298 0.0580 1.4084 0.0640 1.4092 0.0678
10.2 1.5104 0.0538 1.4465 0.0705 1.4534 0.0765 1.4541 0.0840 1.4511 0.0878

4.5 1.5932 0.0762 1.5602 0.0960 1.5296 0.1088 1.5078 0.1213 1.4940 0.1291

B ring 100,000–107,000 km
26.1 1.4164 0.1913 1.3177 0.3528 1.2652 0.4696 1.2436 0.5373 1.2449 0.5579
23.6 1.4393 0.1924 1.3238 0.3534 1.2739 0.4650 1.2619 0.5354 1.2479 0.5519
20.1 1.4606 0.1899 1.3389 0.3492 1.2877 0.4580 1.2713 0.5261 1.2650 0.5414
15.4 1.4785 0.1877 1.3628 0.3428 1.3178 0.4477 1.2886 0.5154 1.2964 0.5278
10.2 1.5245 0.1802 1.4175 0.3264 1.3537 0.4294 1.3211 0.4954 1.3365 0.5051

4.5 1.6849 0.1539 1.5543 0.2799 1.5024 0.3665 1.4900 0.4114 1.4958 0.4261

A ring 127,000–129,000 km
26.1 1.4494 0.1345 1.3504 0.2303 1.3025 0.2924 1.2760 0.3271 1.2775 0.3397
23.6 1.4680 0.1379 1.3515 0.2362 1.3018 0.2970 1.2946 0.3327 1.2800 0.3442
20.1 1.4711 0.1423 1.3483 0.2452 1.3016 0.3072 1.2925 0.3438 1.2836 0.3545
15.4 1.4980 0.1490 1.3874 0.2539 1.3433 0.3182 1.3115 0.3587 1.3206 0.3678
10.2 1.5663 0.1557 1.4712 0.2632 1.4010 0.3342 1.3750 0.3762 1.3860 0.3862

4.5 1.7297 0.1581 1.5885 0.2735 1.5498 0.3387 1.5114 0.3787 1.5240 0.3921

a OE � I(a = 0.5�)/I(a = 6.0�).
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a large number of photons through a ring composed of discrete fi-
nite-sized particles. The particle fields we use to model the rings
are obtained from dynamical simulation models. The particles
are assumed to be much larger than the wavelength so that geo-
metric ray tracing can be used. The particle field, with periodic pla-
nar boundaries, is illuminated by a parallel beam of photons, and
the path of each individual photon is followed in detail from one
intersection with a particle surface to the next scattering, until
the photon escapes the particle field; the new direction after each
scattering is obtained via Monte Carlo sampling of the particle
phase function (see e.g. Plass and Kattawar, 1968; Salo, 1988).
The brightness at a chosen observing direction is obtained by add-
ing together the contributions of all individual scatterings that are
visible from this direction (not blocked by any of the finite-sized
particles). Compared to direct Monte Carlo estimates based on tab-
ulating just the directions of escaped photons, this indirect method
gives significantly reduced variance of the results (see Fig. 5 in
SK2003).

Since we are dealing with low elevation angle observations, the
periodic boundaries must be treated very accurately, as described
in detail in SK2003. To reduce the effect of the discreteness of
the simulated particle fields, results from at least five separate par-
ticle snapshots are combined in the phase curves. Also, the particle
fields are randomly rotated between successive photons to avoid
the possibility that, for example, a single large particle separated
from the main particle field could dominate the results. This rota-
tion is allowed when particle fields that are homogeneous in the
planar directions are used. In contrast, in the self-gravitating exam-
ples, the correct direction of viewing/illumination with respect to
gravity wakes must be maintained, in which case a larger number
of simulation snapshots (40) is averaged in order to reduce noise.
Finally, since our main interest is in the opposition effect, which
represents a deviation from the classical zero volume case, it is
important that our method can reproduce very accurately the clas-
sical results in the asymptotic limit D ? 0 (see Fig. 4 in SK2003).

In the current study, two different particle phase functions are
used: the Lambert law

PLðaÞ ¼
8

3p ½sinaþ ðp� aÞ cos a�; ð11Þ

and a power-law phase function

PpowerðaÞ ¼ cnðp� aÞns ; ð12Þ

where cn is a normalization constant
R

4p PðaÞdX ¼ 1
� �

. For ns = 3.09,
the latter formula gives a good match to the phase function of Cal-
listo (Dones et al., 1993). In the case of Lambert scattering, we uti-
lize the fact that the above given spherical-particle phase function
(van de Hulst, 1980) follows from a very simple surface-element
scattering law SL(cose, cos i) = cose/p, where e and i measure the
emergence and incidence angles with respect to the surface ele-
ment’s normal vector (this formula means that the brightness of
the Lambert surface element, I = pFcos iSL/cose = Fcos i, is indepen-
dent of viewing angle, being just proportional to the incoming flux).
Thus, in each scattering we sample from the distribution SL to ob-
tain the new photon direction with respect to the normal vector
of the local surface element (see SK2003 for details). The advantage
of using surface-element scattering is that the location of scatter-
ings on the particle surface is correctly sampled, which is crucial
for accurate calculation of mutual interparticle shadowing effects.
On the other hand, when using the power-law phase function, we
sample from Eq. (12) the new direction with respect to the direction
of the incoming photon. Since the particles have a finite size, this
necessarily involves an approximation as compared to using a prop-
er surface element law. In SK2003 the Lambert surface-element
scattering law and the Lambert spherical-particle phase function
treatments were compared in detail (see their Fig. 10), and it was

shown that both treatments give very similar results, provided that
the scattering location at the particle surface is accurately sampled,
so that the emerging photon is continued from the point of scatter-
ing (instead of continuing from the particle center, which would be
conceptually more in accordance with the use of spherical particle
scattering law — this alternative would, however, significantly re-
duce the opposition brightening).

In the current study we use Lambert surface-element scattering
whenever we want accurate estimates of the interparticle shadow-
ing, i.e the function fe(a,Beff,s) (the spherical-particle treatment
would also be sufficiently accurate near opposition, provided that
the photon path is continued from the intersection point). The
power-law phase function is mainly used in Section 5, where we
calculate the contribution of multiple scattering, and want to com-
pare the Lambert and power-law phase functions. Although the
amount of multiple scattering itself, Ims, for a given Bond albedo
A, is not strongly dependent on the phase function, the fractional
contribution Ims/(Iss + Ims) will depend on A, as a different A is
needed for a given phase function model to match the low a obser-
vations dominated by Iss. For example, the ring brightness observed
in F555W filter can be matched with the standard ns = 3.09 power-
law phase function if A � 0.4 is adopted. Since the Lambert phase
function is less backscattering than this power-law phase function,
a larger A � 0.7 is needed to obtain a similar low a brightness. As a
consequence, the role of multiple scattering will be more impor-
tant in models using the Lambert phase function.

The principal difference between our approach and the Porco
et al. (2008) ray tracing method is that we include scatterings to
an arbitrary order. Additionally, our method uses Monte Carlo
sampling of the particle phase function (either the surface element
law, or the spherical particle model), so that after each scattering
event a single emerging photon is followed. The computational
burden is thus at most equally divided between each scattering or-
der (in practice, the few first orders dominate as the photon paths
are terminated when they leave the particle layer). On the other
hand, in Porco et al. (2008) each successive scattering is repre-
sented by a bundle of emerging photons, chosen according to a dis-
cretized phase function. This implies that each successive
scattering order requires more and more computations (until they
become computationally prohibitive; in practice Porco et al. (2008)
usually treat orders only up to 4), although their contribution to
the final result gets rapidly smaller. Our Monte Carlo approach will
lead to identical results, but with a significantly reduced statistical
variance for a given computational effort. The improved efficiency
of our method might be quite significant in some applications, in
particular when dealing with cases where multiple scattering is
more important (transmitted radiation, high phase angles, high
particle albedo) than in the current topic of opposition brightening,
which is dominated by first-order scattering.

3.3. Grid of dynamical and photometric simulation models

We study the effect of ring structure on the expected interpar-
ticle mutual shadowing by performing simulations with different
dynamical optical depths (sdyn = 0.1–2.0) and particle size distribu-
tions, assumed to follow a power law distribution

dN=dR / R�q; Rmin < R < Rmax; q ¼ 3; ð13Þ

with the ratio Rmin/Rmax = 0.02–0.2. In all models the maximum ra-
dius Rmax = 5 m. For the elasticity of particles the Bridges et al.
(1984) velocity-dependent coefficient of restitution is assumed

�nðvnÞ ¼min½ðvn=vcÞ�0:234
;1�; ð14Þ

where vn is the normal component of the relative velocity of the
impacting bodies and the scale parameter vc equals
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vB = 0.0077 cm s�1 in Bridges et al.’s measurements. The simulations
are performed for the Saturnocentric distance a = 100,000 km, with
X = 1.94 � 10�4 s�1. Also, to keep the models simple, self-gravity is
not included in these simulations (it is studied separately in Section
5 below). The dynamical simulations are performed with the local
code, using the periodic boundary conditions introduced by Wisdom
and Tremaine (1988) and Toomre and Kalnajs (1991); for more de-
tails of the code see Salo (1995) and Salo et al. (2001). These models
are then illuminated/viewed from the elevation angles B = 4–26� and
the phase angle is varied between 0� and 90�. Compared to SK2003,
where several examples of opposition brightening were given, and
compared to theoretical treatments of Lumme and Bowell (1981)
and Hapke (1986), we now cover a larger range of optical depths
and viewing elevations in a systematic manner, chosen to correspond
to the range of HST observations. Also a larger range of a is explored,
with future applications to spacecraft observations in mind (see
Section 6).

Note that the simulation models are defined in terms of the
dynamical (geometric) optical depth, i.e. the total fractional area
of particles. As discussed in SK2003, in general sdyn differs from
photometric optical depth sphot, defined in terms of the probability
p for a light ray passing through the layer in the perpendicular
direction, p = exp(�sphot). However, at the classical limit D = 0 we
have sdyn = sphot, so that when referring to the theoretical Iss in
Eq. (6) we make no distinction between dynamical and photomet-
ric optical depths, and leave out the subscript from s.

Fig. 7 displays examples of calculated interparticle shadowing
curves, in terms of fe = Iss/Iss(D = 0). It is immediately evident that
the mutual interparticle shadowing opposition effect, measured
as a deviation from the classical single scattering result, may ex-
tend to several tens of degrees.5 The maximum amplitude
fe(a = 0�) is practically independent of the adopted size distribution
and approaches the theoretical maximum fe = 2 (Irvine, 1966) when
the path optical depth spath = sphot/l + sphot/l0 = 2sphot/leff is large.
Also, fe(0�) is reduced for smaller spath, regardless of the assumed
particle size distribution: the maximum amplitude is in good agree-
ment with the theoretical estimate (SK2003)

feð0�Þ ¼
2

1þ expð�spath=2Þ ð15Þ

� 1þ 1
4
spath � 0 s3

path

� 	
. . . ;

which follows from the theoretical treatment of Lumme and Bowell
(1981). In Fig. 7 this estimate is marked with a horizontal line. Also
shown in the upper right corner of the frames is the photometric
optical depth, which in dense homogeneous systems exceeds sdyn

by a factor �(1 + D) (SK2003; see also Peltoniemi and Lumme,
1992). Notice that Eq. (15) implies a similar dependence on spath,
regardless of which combination of sphot and Beff produces it (see
Fig. 13 in SK2003 for detailed comparison for homogeneous sys-
tems; their Emax corresponds to fe(0�)).

Also shown in Fig. 7 are fits to the simulated shadowing curves,
using the Hapke (1986, 2002) formula for the single scattering
brightness enhancement due to SH in a semi-infinite particle layer,

BSHðaÞ ¼ 1þ Bs0

1þ tanða=2Þ
hs

: ð16Þ

Here, Bs0 is the fractional amplitude, and hs describes the width
of the effect. The fits, indicated by solid curves in Fig. 7 use Monte
Carlo results for a < 10�. Very good agreement is seen (the mean

RMS deviation is 0.01), except for the simulations with the widest
size distribution, in which case the fit range extends furthest away
from the peak of the function (note that the Hapke SH formula im-
plies BSH(a) ? 1 for large a, whereas Monte Carlo simulations indi-
cate fe > 1). Similarly, the Monte Carlo curves are well fitted with
the 4-parameter linear-exponential formula, yielding a mean
RMS � 0.005.

As seen in Fig. 7, the angular width of the simulated interparti-
cle shadowing opposition peak depends strongly on the adopted
size distribution, and most importantly, also on the elevation an-
gle. On the other hand, it is nearly independent of sdyn. Fig. 8 shows
the HWHM of the interparticle shadowing enhancement factor,
both as obtained directly from fe(a) curves (in the left), by setting

feða ¼ HWHMÞ � 1 ¼ 1
2
½feða ¼ 0�Þ � 1�; ð17Þ

and from the Hapke SH model (HWHM � 2hs), as well as from the
linear-exponential model fits to the simulation curves. For the Hap-
ke model fits the HWHM’s are close to the actual simulation values,
whereas for the linear-exponential fits the HWHM’s are roughly 2–3
times smaller: the discrepancy is due to the fact that the HWHM for
the linear-exponential fit is calculated from the exponential part,
although a large part of the fit is due to the linear slope.

The fact that the widest size distribution has the narrowest
opposition peak, is consistent with the Hapke (1986) theoretical
model for semi-infinite particle layers. According to his formulae,

HWHM
Dðss ¼ 1Þ ¼

3
4
hrihRi
hVi ¼

3
4
hR2i1:5

hR3i
¼ 3

4
Y ; ð18Þ

where D(ss = 1) is the volume density at the layer where the slant
optical depth equals unity, hri and hVi are the average scattering
cross section and particle volume, and hRi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hri=p

p
. For a q = 3

power law size distribution the Hapke function Y is

Y ¼
ffiffiffi
2
p
ðln WsÞ1:5Ws

ðWs � 1Þ W2
s � 1

� 	0:5 ; ð19Þ

where Ws = Rmax/Rmin. Applied to our size distributions, and using
the central plane volume filling factors (D(z = 0) = 0.32–0.38) for
D(ss = 1), this predicts that HWHM = 3–12�, for Ws = 50–5, respec-
tively. In addition to predicting correctly the relative change in
HWHM, these width estimates are quite close to the results of the cal-
culations for B = 26�, suggesting that for this elevation the reflection
is indeed from the dense equatorial layer. On the other hand, for low-
er elevations the reflection is actually from the upper layers with a
substantially smaller effective D (see Fig. 1 for a schematic illustra-
tion). According to Fig. 9 in SK2003, for the dynamical simulations
studied here, the filling factor at a given vertical coordinate z0 (on
the side of illumination/viewing) is roughly proportional to the path
optical depth for a perpendicular illumination reaching this layer,

Dðz0Þ / sphotðz > z0Þ: ð20Þ

Since for an oblique view ss = sphot/sinB, setting ss � 1 corre-
sponds to reflection from the level z0 where sphot(z > z0) � sinB,
at which elevation the volume density D(z0) � sinB � D(z = 0). This
explains the practically linear dependence,

HWHM / B; ð21Þ

coming in addition to the size distribution dependence implied by
the Hapke (1986) formula. Note that for a vertically uniform ring,
the expected width would be independent of Beff, regardless of size
distribution.

Fig. 9 shows the enhancement factors fe(0.5�) and fe(6�), which
mark the range of phase angles for which the simulated and
observed opposition enhancements will be compared in the next

5 In fact, the reflected Iss is enhanced for any phase angle: see SK2003. Fig. 7 and the
discussion related to it, and Fig. 22 below. This enhancement follows, since for a
geometrically thin layer the illuminated upper layers are preferentially visible at
every lit side geometry.
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section. Two optical depths (sdyn = 0.1 and 1.5) are compared: note
that although for the small sdyn the fe’s are much smaller, the ratio
OEe = fe(0.5�)/fe(6�) (right hand panel) can still be fairly large for
low elevations, at least qualitatively consistent with Fig. 7 showing
significant elevation angle dependence of OEobs even for the C ring.
For the larger optical depths, the enhancement factors, as well as
their ratio, are typically larger: however, the ratio OEe = fe(0.5�)/
fe(6�) depends in a quite complicated way on the width of the as-
sumed distribution and the elevation angle. Essentially, this is due
to the fact that for the wide distributions, the width of the opposition
peak sweeps through the range a = 0.5–6.0� when B decreases.

Finally, Fig. 10 shows examples of opposition brightening for
different optical depths and elevations, both with and without
the inclusion of multiple scattering. Instead of normalizing to the
theoretical single scattering values as in the previous figures, the
figure shows I/I(6�). In this figure, the ns = 3.09 power-law phase
function with A = 0.5 was used. The small difference between the
total intensity curves and those for single scattering again under-
lines that, at least for these phase functions, multiple scattering

has only a minor role on the near-opposition phase curves. In Sec-
tion 5, we show that this conclusion is also supported by the tilt-
effect observations.

4. Extracting the elevation angle dependent component via
model comparisons

4.1. Separating intrinsic and intra-particle contributions

From the analysis presented in Section 3.2, we have not yet
determined the absolute contributions of intrinsic (fi) and interpar-
ticle (fe) contributions to the near-opposition brightness increase.
Rather, we have identified the amount of OEe(Beff) relative to
Beff = Bnorm, or the relative amount of OEi(k) relative to k = knorm,
respectively (here, OEe � fe(amin)/fe(amax) and OEi � fi(amin)/fi(a-
max)). In order to estimate the interparticle shadowing enhance-
ment factor fe(a,Beff) we utilize simulation modeling: we
compare the observed OEobs(Beff)/OEobs(Bnorm) (using amin = 0.5�,
amax = 6�, Bnorm = 20�) to the OEe(Beff)/OEe(Bnorm) ratios indicated

Fig. 7. Grid of dynamical and photometric simulation models performed with different optical depths and widths of particle size distributions. The interparticle shadowing
enhancement of the single scattering, fe = Iss/Iss(D = 0), is plotted as a function of phase angle a; here Iss(D = 0) is the theoretical single scattering intensity for classical zero
volume density ring, whereas Iss is the simulated value including the shadowing effects between finite-sized particles. The simulation results are indicated by symbols, while
the solid curves indicate Hapke (2002) SH fits to them. The dynamical simulations use the Bridges et al. (1984) elasticity law, and a power law size distribution dN/dR = R�q,
with q = 3 and Rmax = 5 m; the minimum size is Rmin = 0.1–1.0 m. Simulations performed with dynamical optical depths sdyn = 0.1–2.0 are shown. Self-gravity is not included,
and thus the systems remain homogeneous in all planar directions. Photometric Monte Carlo calculations are performed for elevations B = Beff = 4�, 10�, 15�, 26�, using a
Lambert surface-element scattering law. The numbers in the frames indicate the path optical depth spath = �lnp, where p is the probability of a photon to pass through the
particle layer, and the calculated normal optical depth s = spathsinB.
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by the above described simulations performed for different optical
depths and widths of the size distribution.

The best match simulation then implies a particular fe, and the
intrinsic contribution can be estimated from Eq. (5) (ignoring the
Qms term):

fiða; kÞ ¼
Iobsða;Beff ; s; kÞ
Issða;Beff ; s; kÞ

1
feða;Beff ; sÞ

; ð22Þ

where Iss is the theoretical singly scattered intensity for D = 0. Note
that there is still some freedom here, since the Iss contains the prod-

uct AP(a), which, as being independent of Beff cannot be separated
from fi. In practice we will divide the observations with the simu-
lated interparticle shadowing contribution and determine the ratio

giðaÞ �
fiðaÞPðaÞ

fið6�ÞPð6�Þ
¼ IobsðaÞ

Iobsð6�Þ
:

feðaÞ
feð6�Þ

: ð23Þ

The normalized intrinsic effect gi(a) in the left side is also a
quite good approximation for fi(a) itself. That is, since the intrinsic
opposition effect has HWHM < 1�, we have fi(6�) � 1. Also, the var-
iation in the phase function between a = 0� and 6� is most likely
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Fig. 8. The half-width half-maximum (HWHM) for the interparticle shadowing effect in the single scattered component fe = Iss/Iss(D = 0), obtained directly from the simulated
fe(a) curves (left), from Hapke SH fits (middle), and from linear-exponential fits (right) to some of the simulations displayed in Fig. 7.

Fig. 9. The interparticle shadowing enhancement of the single scattering, fe = Iss/Iss(D = 0) evaluated at a = 6� (left) and a = 0.5� (middle). At the right, the ratio OEe = fe(0.5�)/
fe(6�) is shown.
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very small (P(0�)/P(6�) = 1.005 and 1.11 for the Lambert and the
n = 3.09 power-law phase functions, respectively). As a useful
check of the extraction procedure, we can use the fact that obser-
vations at all elevation angles should yield the same gi(a).

Fig.11showsthis procedureappliedtotheC,B,A ringregions. Inthe left
panels, theOEobs intheU(F336W)andI(F814W)filters iscomparedtosim-
ulationsperformedwithvariouswidthsofthesizedistribution,whileinthe
right panels, both observations and simulations have been normalized to
the OE at Bnorm = 20�. In the left hand panels the observed OE’s are clearly
larger than the simulated ones, which contain just the interparticle shad-
owing contribution: the excess is duetothe intrinsicoppositioneffect. Also,
the OE in U is clearly larger than in the I filter. However, at right, after nor-
malization to Bnorm = 20�, the observed and simulated elevation angle
trends are much closer to each other. Also note how well the normalization
removes the wavelength dependence of the observations in the right pan-
els, with the U and I filters behaving in a very similar manner.

For the C ring (upper row in Fig. 11) a detailed comparison is
made to simulations with sdyn = 0.1, in which case the magnitude
of the elevation angle dependent OE increases monotonically with
the width of the size distribution. Clearly, the best match to the ele-
vation angle dependent part is obtained with the widest studied dis-
tribution Ws = 50; the curves also suggest that a still larger Ws would
further improve the fit. On the other hand, the B ring (middle row) is
compared to simulations with sdyn = 2.0, and now the match is best
for a much narrower size distribution Ws = 5–10. The main differ-
ence in the simulated OEe(Beff)/OEe(Bnorm = 20�) curves for small
and large sdyn’s is the turning down at low Beff values in the case of
large sdyn and large Ws. As mentioned earlier, the reason is that in
this case the width of the interparticle shadowing peak is so small
that it falls inside the studied a range. For the A ring region (lower
row) the comparison is made to simulations with sdyn = 1, and just
as for the B ring region, a quite narrow size distribution Ws � 5 is pre-
ferred. Interestingly, for the A ring the sdyn = 1 (or even sdyn = 2) case
provides a slightly better match than that with the nominal
sdyn = 0.5, although the difference is not large. This is not surprising,
taking into account that the mid-A ring is the location where self-
gravity wakes are strongest: the actual amount of light reflection
must result from a superposition of dense wakes and rarefied gaps,
with the wakes having much higher optical depth than the nominal

s � 0.5 (Colwell et al., 2006; Hedman et al., 2007). The fact that we
are comparing the A ring to non-gravitational simulations in the first
place might seem suspect. However, French et al. (2007b) showed
that there is very little difference in the phase curve between wake
and non-wake simulations.

In order to demonstrate that the above extraction procedure
works as intended, Fig. 12 compares the original HST F336W phase
curves (left panels) with those after the removal of the elevation
angle dependent part (middle). All the curves are shown normal-
ized to a = 6�. Clearly, the residual curves in the middle panel,
gi(a) = fi(a) P(a)/[fi(6�)P(6�)], are all very close to each other, indi-
cating that the removal of the elevation dependent part has been
successful (similarly for the other filters; see Fig. 13). The removed
interparticle shadowing contributions themselves, fe(a)/fe(6�), for
the various Beff’s are also shown (right panels).

4.2. Fitting the intrinsic component

Once the elevation angle dependent part of the opposition effect
has been removed, it is interesting to make model fits to the resid-
ual curves, which presumably represent the true intrinsic opposi-
tion effect. In this sub-section, the fit parameters are given for
both linear-exponential and Hapke (2002) models. We also com-
pare our results to French et al. (2007b), to see how much the de-
duced intrinsic parameters differ from those obtained from fits to
original high elevation angle data points, where the effect of inter-
particle shadowing is least pronounced.

Fig. 13 shows the deduced residual intrinsic components (large
symbols), together with model fits (thick blue curves), for all five
different filters. These data, collecting the observations from all
elevations, are also compared with the original high elevation an-
gle data (Beff � 23�; indicated by small symbols and thin orange
curves6): since from these latter points the interparticle shadowing
contribution has not been removed, the ratio between the data sets
measures the amount of interparticle shadowing correction for
Beff = 23�.
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Fig. 10. Opposition phase curves in selected simulation models, including the multiply-scattered contribution: solid and dashed lines indicate the single scattered intensity
normalized to a = 6�, while dotted lines indicate the same for the total singly + multiply-scattered radiation. The ns = 3.09 power-law phase function is used, with Bond albedo
0.5; the gray dash-dotted curve indicates the contribution from the power-law phase function alone, amounting to about 1.11 for the interval a = 0–6�. The shaded region
indicates the range a = 0.5–6� used in the comparison of simulated and observed intensities in Section 4.

6 The Beff = 26� data are also included, after they have been corrected to correspond
to Beff = 23�, by first dividing by fe(26�)Iss(26�) and then multiplying by fe(23�)Iss(23�).
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The model fits shown in Fig. 13 are made with the Hapke (2002)
formulation, which includes both intraparticle shadow hiding and
coherent backscattering contributions,

giðaÞ ¼ AiBSHðaÞBCBðaÞ: ð24Þ

Here BSH(a) describes the intrinsic shadow hiding part, assumed
to be similar in form to Eq. (16) used above for fitting the simulated

interparticle shadowing, and BCB(a) is the coherent backscattering
contribution (with fractional amplitude Bc0 and HWHM � 0.72hc),

BCBðaÞ ¼ 1þ Bc0

1þ 1�e� tanða=2Þ=hc

tanða=2Þ=hc

2½1þ tanða=2Þ=hc�2
: ð25Þ

Compared to Hapke (2002), we have omitted from shadow hid-
ing the part containing the Henyey–Greenstein phase function of
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regolith grains, as well as the multiple scattering at the particle
surface regolith, since the parameters related to these contribu-
tions cannot be reliably determined from the near-opposition data
alone. Here, this part is absorbed into a single parameter Ai related
to the unspecified optical properties of regolith grains. Note, how-
ever, that we apply this fit to data normalized to a = 6�: in this case
Ai is not an independent parameter but is determined by the nor-
malization and the other parameters. A similar model, except for
fitting the original high elevation I/F measurements, and including
the full Hapke (2002) formulas for the grain phase function and
multiple scattering, was used in French et al. (2007b). As in French
et al. (2007b), here we also take into account the finite size and
limb darkening of the solar disc in the calculation of model bright-
ness for the near to opposition phase angles.

The parameters of the intrinsic effect fits shown in Fig. 13 are
collected in Table 6: the typical RMS residuals of the fits normal-
ized to a = 6� are of the order of 0.015–0.02 (similar to those ob-
tained when using original uncorrected high elevation angle
data). For comparison, fits to the intrinsic gi(a) using the linear-
exponential formula (Table 7) yield residuals comparable in mag-
nitude to those using the simplified Hapke model.

Fig. 13 also shows separately the intra-particle SH contribution:
in the fitted models, this is conveniently quantified by the
enhancement factor at the zero phase, SH(0�) = Ai(1 + Bs0). Interest-
ingly, for the A and B rings, the amount of the deduced intra-par-
ticle SH is almost negligible (SH(0�) � 1.0), except for F336W,

where SH(0�) � 1.1. For the A and B ring regions, the intrinsic
brightening can thus be accounted for almost entirely by the
coherent backscattering, with a typical value CB(0�) = (1 + Bc0) �
1.4–1.5. On the other hand, for the C ring the SH brightening is
clearly stronger in all filters, with SH(0�) � 1.3; in contrast, the
CB contribution is quite similar to the B and A ring regions. Note
that this kind of separation is not possible when using the original
data without removal of the interparticle contribution.

The linear-exponential and Hapke-model fit parameters are fur-
ther displayed in Figs. 14 and 15, respectively. Altogether, fits to
three different data sets are compared:

(1) The original high elevation angle data set used in French
et al. (2007b), combining the Cycle 13 exact opposition point
for Beff = 22.9� with the Beff = 26� data (upper row).

(2) The original Beff = 23� (Cycles 13 and 9 combined) and
Beff = 26� (Cycles 10–12) data sets, the latter normalized to
Beff = 23� as described in footnote 6 (middle row).

(3) The combined data set from all Beff’s, containing just the
intrinsic component (lower row).

Data sets (2) and (3) are those discussed in connection to
Fig. 13. A comparison of data sets (1) and (2) (the two first rows
in Fig. 14) shows that the A and B ring fits are nearly identical: both
sets indicate that HWHM is about 0.1� for the BVRI filters, rising to
0.15–0.20� toward U. However, for the C ring region, although the
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estimated HWHM is more or less the same in all filters for both
data sets, there is a nearly twofold difference in the fitted values.
A similar difference between the data sets (1) and (2) is also seen

in the Hapke model parameters (compare the two uppermost rows
of Fig. 15). The difference arises from the inaccurate inclusion of
the Cycle 13 exact opposition point among the 26� data without
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Fig. 13. The intrinsic component of opposition brightening in all five filters, after removing the interparticle shadowing contribution displayed in Fig. 12 (for F336W the
points are the same as the middle column of Fig. 12). Thick blue curves indicate the CB/SH (simplified Hapke (2002) model) fits to the data; the lower curve shows the SH
contribution separately, while the CB contribution corresponds to the ratio between the two curves. For comparison, the original HST phase curves at Beff = 23–26� are also
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Table 6
CB–SH (simplified Hapke) model parameters for the intrinsic opposition effect.a

Ring Filter Ai BC0 BS0 hC hS SH(0) HWHM RMS

C F336W 0.725 0.516 0.781 0.0036 0.052 1.290 0.147 0.0183
F439W 0.837 0.447 0.559 0.0030 0.029 1.305 0.125 0.0163
F555W 0.841 0.452 0.526 0.0030 0.032 1.284 0.125 0.0193
F675W 0.844 0.489 0.477 0.0032 0.036 1.247 0.131 0.0135
F814W 0.852 0.467 0.469 0.0030 0.034 1.251 0.122 0.0155

B F336W 0.930 0.467 0.201 0.0039 0.031 1.116 0.162 0.0154
F439W 0.975 0.426 0.084 0.0028 0.019 1.057 0.114 0.0147
F555W 0.991 0.395 0.047 0.0022 0.006 1.037 0.091 0.0148
F675W 0.993 0.431 0.000 0.0024 �0.000 0.993 0.100 0.0164
F814W 0.996 0.416 0.046 0.0024 0.000 1.041 0.099 0.0136

A F336W 0.693 0.559 0.578 0.0036 0.165 1.093 0.147 0.0218
F439W 0.535 0.500 0.940 0.0027 0.591 1.039 0.113 0.0183
F555W 0.524 0.461 0.928 0.0025 1.920 1.009 0.104 0.0191
F675W 0.518 0.480 0.921 0.0024 43.44 0.994 0.098 0.0213
F814W 0.518 0.481 0.924 0.0023 – 0.997 0.093 0.0166*

a Intrinsic effect normalized to a = 6� (=gi(a) defined by Eq. (22)). The Ai, BC0, BS0, hC, hS are the original parameters in the fits, while SH(0) = Ai (1 + BS0) and HWHM = 0.72hc

expressed in degrees.
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accounting for the different elevation (data set 1). The strong ele-
vation angle dependence when combining such nearby Beff’s is

due to the low optical depth of the C ring, making its I/F decrease
sharply with elevation angle. That is, for s = 0.1 the geometrical

Table 7
Linear-exponential model parameters for the intrinsic opposition effect.a

Ring Filter a0 b0 d0 k0 a0/b0 k0/b0 HWHM RMS

C F336W 0.632 1.248 0.301 �2.3252 0.507 �0.033 0.208 0.0195
F439W 0.603 1.223 0.283 �2.0944 0.493 �0.030 0.196 0.0202
F555W 0.590 1.210 0.285 �1.9575 0.487 �0.028 0.198 0.0211
F675W 0.579 1.193 0.292 �1.7778 0.485 �0.026 0.202 0.0159
F814W 0.551 1.192 0.288 �1.7842 0.462 �0.026 0.199 0.0190

B F336W 0.492 1.095 0.307 �0.9147 0.449 �0.015 0.213 0.0150
F439W 0.423 1.050 0.212 �0.5067 0.403 �0.008 0.147 0.0152
F555W 0.389 1.025 0.170 �0.2875 0.379 �0.005 0.118 0.0153
F675W 0.367 1.001 0.194 �0.0456 0.367 �0.001 0.134 0.0153
F814W 0.372 1.004 0.184 �0.0684 0.370 �0.001 0.128 0.0152

A F336W 0.544 1.113 0.249 �1.1088 0.489 �0.017 0.173 0.0209
F439W 0.469 1.056 0.192 �0.5569 0.444 �0.009 0.133 0.0188
F555W 0.420 1.027 0.174 �0.2891 0.409 �0.005 0.120 0.0192
F675W 0.416 1.011 0.173 �0.1587 0.411 �0.003 0.120 0.0209
F814W 0.416 1.014 0.164 �0.1740 0.411 �0.003 0.114 0.0168

a Intrinsic effect normalized to a = 6� (=gi(a) defined by Eq. (22)). The a0 , b0 , d0 , k0 are the original fit parameters, a/b0 , k0/b0 indicate the normalized amplitude of the
exponential part, and the normalized linear slope, the HWHM = d0ln2 expressed in degrees.
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Fig. 14. Wavelength dependence of linear-exponential model fits for the C, B, and A ring regions. The upper row corresponds to the data set used in French et al. (2007b): the
Beff � 26� data (Cycles 10–12) are combined with the Cycle 13 opposition data point for Beff � 23�, without any normalization of the I/F levels. The frames display the HWHM,
amplitude, and normalized slope from the fits. In the middle row, all original data for Beff � 23� and �26� are combined (Cycles 9–13), after proper normalization of the I/F
levels to Beff = 23�; the interparticle shadowing component has not been eliminated (this corresponds to the thin curves and small orange symbols in Fig. 13). The lower row
combines the data from all elevation angles, after removal of the interparticle shadowing component (corresponding to the thick curves and large symbols in Fig. 13).
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factor in the singly scattered I/F (the exponential term in Eq. (6)) is
about 1.1 times larger for Beff = 23� than for Beff = 26�. For the high-
er optical depth B and A rings the dependence is much weaker (for
s = 0.5, 1.0, 2.0 the difference in (I/F)ss is 1.03, 1.005, 1.0001, respec-
tively) and the nearby Beff’s can be safely combined.7

Comparing the fits for the intrinsic opposition effect data, and
for the original Beff = 23� + 26� data set properly normalized to
Beff = 23� (third and second rows, respectively, in Figs. 14 and
15), we can see that the main difference is in the linear slope (for
the linear-exponential fits), and in the SH(0) amplitude (for the
simplified Hapke-model fits). For the linear-exponential model
the slope is significantly reduced, in particular for the B and A
rings, and the same is true for the SH(0) in the Hapke model. This
quantifies the difference seen in Fig. 13 between the two sets of
model curves. On the other hand, the HWHM’s are almost unaf-
fected by the removal of interparticle shadowing contribution.

Table 8 lists the intrinsic (SH + CB) and external (interparticle
shadowing) contributions to OE(0.5�) � I(0.5�)/I(6�) and OE(0�) �
I(0�)/I(6�), for different filters and ring regions. The internal contri-

bution OEi is calculated from the Hapke fit parameters (solid curves
in Fig. 13), and the interparticle contribution OEe has been calcu-
lated for Beff = 23�, using the best fit simulation models shown in
Fig. 12. The modeled total opposition enhancement is then
OE = OEi � OEe; for OE(a = 0�) this can be compared to the observed
(Cycle 13) I(0�)/I(6�) listed in the last column (showing agreement
to within 2%). Table 9 is similar, except that OEe has been calcu-
lated for Beff = 4.5�: combined with OEi the predicted total enhance-
ment I(0�)/I(6�) is about 2.7, 2.5, and 2.6 for the C, B, and A rings,
respectively. Unfortunately there are no HST comparison data,
since the minimum phase angle during the low elevation angle
opposition (Cycle 6) was �0.3� (the smallest observed a = 0.46�).

5. Tilt effect: interparticle shadowing or multiple scattering?

5.1. HST observations of the tilt effect at different filters and phase
angles

Traditionally, the term tilt effect refers to the brightening of the
B ring with increasing elevation, amounting to as much as 30% for
the ground-based range of Beff’s (e.g. Lumme et al., 1983), in con-
trast to the nearly constant brightness one would expect for an
optically thick classical multilayer ring dominated by single scat-
tering. On the other hand, for the A ring the observed I/F was found
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Fig. 15. Same as Fig. 14, except for CB/SH fits. The frames display the coherent backscattering HWHM = 0.72hcb (left column) and amplitude Bc0 (middle column), and the
shadow hiding contribution at zero phase angle, SH(0�) = A0(1 + Bs0) (right column).

7 In principle, the fact that we are fitting I/I(6�) instead of I/F itself could affect our
fits. However, we confirmed that a similar change in the C ring fit parameters is seen
in the French et al. (2007b) original fits, if the I/F for the Cycle 13 point is divided by I
ss(23�)/Iss(26�) � 1.1 before combining with the 26� data.
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to be nearly constant or slightly decreasing with increasing ring tilt
(Lumme and Irvine, 1976b), more consistent with the single scat-
tering prediction, Eq. (6) (Iss/F is a decreasing function of Beff in
the case of s [ 0.5, and practically constant for s P 0.5 ). Note that
these early measurements actually refer just to the brightest inner-
most portion of the A ring: the HST images (Cuzzi et al., 2002) re-
vealed that for the mid-A ring the brightness in fact decreases quite
markedly with elevation, much more than predicted by Eq. (6).

In Salo et al. (2004) this A-ring negative tilt effect was attributed
to the increased visibility of the gaps between self-gravity wakes at
larger elevations. Indeed, this explanation in terms of gaps/wakes
is now fully supported by the Cassini occultation measurements
(Colwell et al., 2006, 2007; Hedman et al., 2007).

The B ring tilt effect has been viewed as a consequence of multi-
ple scattering, which becomes more important with increasing ring
elevation: this is also supported by the fact that the tilt effect is
pronounced for the optically thick B ring (Lumme and Irvine,
1976b; Esposito and Lumme, 1977; Lumme et al., 1983). However,
from analysis of HST observations showing the lack of significant
color variations with respect to ring elevation, Cuzzi et al. (2002)
and Poulet et al. (2002) concluded that multiple scattering must
be quite weak in the backscattering geometry of Earth-based
observations. SK2003 proposed that the tilt effect is a consequence
of the variation in the effective filling factor with opening angle,
taking place for vertically non-uniform rings. According to this
view, based on N-body simulations and Monte Carlo scattering cal-
culations, the observed reflection at low elevations is dominated by
the rarefied upper ring layers, which should have a very narrow
opposition peak. Thus the tilt-effect observations, made typically
at a phase angle of a few degrees, fall outside the opposition peak.
However, as the elevation angle increases, the reflection is more
and more dominated by the dense equatorial ring layer. This
should exhibit a much wider opposition peak, which increases
the observed brightness. The magnitude of this effect should also
increase with increasing s. However, in SK2003 no suitable data
were available for testing this hypothesis. Note that this explana-
tion is intimately tied to the mechanism generating the opposition
effect of the rings: in the previous section we have shown that this
contains both intrinsic and interparticle contributions. It is there-
fore important to test the SK2003 hypothesis for the tilt effect,
using the HST data.

The observed tilt effect is illustrated in Fig. 16, which displays
radial profiles of the ring ansa brightness at several elevations, nor-
malized to that at Beff = 4.5�. Observations with the filter F555W

are shown separately for two phase angles: a = 6� (upper panel)
and a = 0.5� (lower panel). The a = 6� plots correspond to Fig. 8b
in Cuzzi et al. (2002), except for the normalization. They show
the strong positive tilt effect (I/F increasing with increasing Beff)
for the brightest part of the B ring, and a weaker but still positive
effect in the innermost A and B rings. In contrast, the mid-A ring
(124,000–133,000 km) has a negative tilt effect, due to the afore-
mentioned wakes.

At low phase angle (a = 0.5�), the behavior changes quite mark-
edly. For the A ring, the negative tilt effect is even more pro-
nounced at a = 0.5� than at a = 6�. In the inner B ring (93,000–
99,000 km), the tilt effect is now also negative, and a positive ef-
fect is prominent only in the region 105,000–110,000 km.

To exclude the possibility that the differences could be due to
anomalous behavior of Beff = 4.5� images (some of which were af-
fected by spokes, though not the ones included to Figs. 16 and
17) compares two other filters, this time normalized to Beff = 10�.
Overall, a very similar behavior is seen as in the previous figure,
although the B ring a = 6� tilt effect appears a bit stronger for
F814W than for F336W.

Table 8
Modeled intrinsic and interparticle opposition effects at Beff = 23�.a

Filter OEi(0.5�) OEe(0.5�) OE(0.5�) OEi(0.0�) OEe(0.0�) OE(0.0�) OEobs(0�)

C ring 78,000–83,000 km, model: sdyn = 0.1, 0.1–5.0 m
F336W 1.35 1.05 1.42 1.86 1.07 1.99 2.02
F439W 1.32 1.05 1.39 1.79 1.07 1.92 1.96
F555W 1.30 1.05 1.37 1.76 1.07 1.89 1.94
F675W 1.28 1.05 1.35 1.76 1.07 1.88 1.91
F814W 1.28 1.05 1.34 1.73 1.07 1.86 1.88

B ring 100,000–107,000 km, model: sdyn = 2, 1–5.0 m
F336W 1.18 1.20 1.42 1.57 1.22 1.91 1.94
F439W 1.09 1.20 1.31 1.42 1.22 1.74 1.77
F555W 1.05 1.20 1.26 1.35 1.22 1.66 1.70
F675W 1.03 1.20 1.24 1.34 1.22 1.63 1.66
F814W 1.03 1.20 1.24 1.34 1.22 1.63 1.67

A ring 127,000–129,000 km, model: sdyn = 1, 1–5.0 m
F336W 1.18 1.21 1.43 1.62 1.24 2.00 2.02
F439W 1.09 1.21 1.32 1.46 1.24 1.81 1.85
F555W 1.05 1.21 1.27 1.38 1.24 1.71 1.75
F675W 1.04 1.21 1.25 1.37 1.24 1.70 1.73
F814W 1.04 1.21 1.25 1.37 1.24 1.70 1.73

a The symbols OE(0.5�) � I(0.5�)/I(6�), and OE(0�) � I(0�)/I(6�). The total opposition effect is the product of the intrinsic and external (inter-
particle) contributions; OE(0�) = OEi(0�) � OEe(0�), OE(0.5�) = OEi(0.5�) � OEe(0.5�).

Table 9
Modeled intrinsic and interparticle opposition effects at Beff = 4.5�.a

Filter OEi(0.5�) OEe(0.5�) OE(0.5) OEi(0.0�) OEe(0.0�) OE(0.0�)

C ring 78,000–83,000 km, model: sdyn = 0.1, 0.1–5.0 m
F336W 1.35 1.21 1.63 1.86 1.46 2.72
F439W 1.32 1.21 1.59 1.79 1.46 2.62
F555W 1.30 1.21 1.57 1.76 1.46 2.58
F675W 1.28 1.21 1.55 1.76 1.46 2.57
F814W 1.28 1.21 1.54 1.73 1.46 2.54

B ring 100,000–107,000 km, model: sdyn = 2, 1–5.0 m
F336W 1.18 1.45 1.72 1.57 1.58 2.48
F439W 1.09 1.45 1.58 1.42 1.58 2.25
F555W 1.05 1.45 1.52 1.35 1.58 2.14
F675W 1.03 1.45 1.50 1.34 1.58 2.11
F814W 1.03 1.45 1.50 1.34 1.58 2.12

A ring 127,000–129,000 km, model: sdyn = 1, 1–5.0 m
F336W 1.18 1.48 1.74 1.62 1.63 2.64
F439W 1.09 1.48 1.61 1.46 1.63 2.39
F555W 1.05 1.48 1.56 1.38 1.63 2.26
F675W 1.04 1.48 1.53 1.37 1.63 2.24
F814W 1.04 1.48 1.53 1.37 1.63 2.24

a The symbols OE(0.5�) � I(0.5�)/I(6�), and OE(0�) � I(0�)/I(6�). The total opposi-
tion effect is the product of the intrinsic and external (interparticle) contributions;
OE(0�) = OEi(0�) � OEe(0�), OE(0.5�) = OEi(0.5�) � OEe(0.5�). The last column lists the
observed I(0.5�)/I(6�).
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5.2. Modeling the B ring tilt effect

In principle, both interparticle shadowing and multiple scatter-
ing can cause a positive tilt effect. Our goal in this section is to pro-
vide a quantitative estimate of how much these factors contribute
to the observed B ring tilt effect. For interparticle shadowing, our
estimate follows directly from the opposition effect models of
the previous section. An estimate for the fractional amount of mul-
tiple scattering, Qms, can be obtained by comparing the magnitude
of the tilt effect at long and short wavelengths. The particle albedo
increases significantly with wavelength in the visual regime, which
also increases the relative amount of multiple scattering: thus the
contribution of multiple scattering, if significant at all, should re-
sult in a strong wavelength dependence in the tilt effect. Our ap-
proach here, for multiple scattering, is thus very similar to the
Cuzzi et al. (2002) color analysis.

We quantify the tilt effect by the ratio of scaled intensities,bI ¼ I=Iss, measured at a given elevation, normalized to that of bI at
Beff = 4.5�. Using the ratio of scaled intensities, instead of intensi-
ties, simply removes the geometric contribution to the tilt effect
arising from the factor 1 � exp(�2s/sinBeff) in Iss (i.e. at small s,
Iss(B) is a decreasing function of B while at larger s it is practically
constant). The difference is not large: compare the two uppermost
frames in Fig. 18, showing the A and B ring tilt effect, by plotting
either the ratio of intensities (upper frame), or that of scaled inten-
sities (middle frame) as a function of Voyager Photopolarimeter
Subsystem (PPS) optical depth, obtained from the NASA Planetary
Data System Rings Node (Showalter et al., 1996). Both profiles
highlight the strong s dependence of the tilt effect.

Denoting the ratio bIðBeffÞ=bIðBeff ¼ 4:5�Þ by RB, we have

RBða;Beff ; s; kÞ ¼
ðI=IssÞða;Beff ; s; kÞ

ðI=IssÞða; Beff ¼ 4:5�; s; kÞ

� fiða; kÞfeða; Beff ; sÞ þ QmsðBeff ; s; kÞ
fiða; kÞfeða;Beff ¼ 4:5�; sÞ ;

where we have utilized the fact that Qms in Eq. (5) is insignificant at
Beff = 4.5� (Cuzzi et al., 2002). Furthermore, when evaluated at
a = 6�, we can safely assume that fi � 1 (since its HWHM in Section
4 found to be 	6�). Therefore,

RBða ¼ 6�;Beff ; s; kÞ �
feða ¼ 6�;Beff ; sÞ þ QmsðBeff ; s; kÞ

feða ¼ 6�;Beff ¼ 4:5�; sÞ : ð26Þ

Since Qms	 1, we may further approximate

RBða ¼ 6�;Beff ; s; kÞ

� feða ¼ 6�;Beff ; sÞ
feða ¼ 6�;Beff ¼ 4:5�; sÞ þ Q msðBeff ; s; kÞ: ð27Þ

Since according to Fig. 9, the factor fe(a = 6, Beff = 4,5�, s) should
be close to unity. This approximation illustrates that the tilt effect
can indeed be partly due to interparticle shadowing (the fe(Beff)/
fe(4.5�) term), and partly due to multiple scattering (Qms): both im-
ply enhanced ring brightness at larger Beff, and also at larger s. Con-
cerning the interparticle shadowing contribution, the various size
distribution models of Fig. 9 in Section 3 imply an enhancement
by 1.25–1.35 for Beff = 26�, sdyn = 1.5, all in qualitative agreement
with the B ring observations. The interparticle shadowing effect
is thus very robust, in the sense that it does not require very spe-
cific ring models in order to be able to account for the observed
strong tilt effect.

To isolate the Qms contribution, we form the difference of RB at
two different filters, with wavelengths k1 and k2,

DkRB ¼ RBða ¼ 6�;Beff ; s; k2Þ � RBða ¼ 6�;Beff ; s; k1Þ
� Q msðk2Þ � Q msðk1Þ: ð28Þ

Following Cuzzi et al. (2002; their Appendix) we assume that
the multiply-scattered flux Ims(k) / [A(k)]n, where n � 2–3 indi-
cates the typical order of scattering responsible for multiply scat-
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Fig. 16. The tilt effect on the brightness of the A and B rings, for a � 6� (upper frame) and a � 0.5� (lower frame). Radial F555W brightness profiles at the ansa have been
grouped together by Beff and averaged, and then normalized by the low ring elevation profile with Beff = 4.5�. Note the positive tilt effect for the B ring and the negative
(inverse) tilt effect for the A ring.
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tered light. The ratio of fractional multiple scattering contributions
at different wavelengths is then Qms(k2)/Qms(k1) � [A(k2)/A(k1)]n�1.
Eliminating Qms(k1) leads to an estimate

Q msðk2Þ �
DkRB

1� ½Aðk1Þ=Aðk2Þ�n�1 : ð29Þ

Since the backscattered flux is dominated by single scattering,
the ratio of albedos can be roughly estimated as A(k1)/
A(k2) = Iss(k1)/Iss(k2) � I(k1)/I(k2) evaluated at a = 6�,Beff = 4.5� (hav-
ing minimal contribution of multiple scattering and opposition
brightening). For the studied B ring region the observed I/F’s at
Beff = 4.5�, a = 6� are 0.16 and 0.44 at F336W and F814W, respec-
tively. Eq. (29), together with n � 2 then indicates Qms(F814W) �
1.5DkRB. According to lowermost frame of Fig. 18, the maximum
of DkRB is �0.1, suggesting a maximal Qms � 0.15 for the F814W fil-
ter (and �0.05 for F336W). This justifies the omission of Qms in pre-
vious sections (the fractional error of the derived fi is of the order of
Qms). Comparing to the interparticle shadowing contribution
(about 30% enhancement in RB) we can now estimate that the rel-
ative contribution of multiple scattering to the tilt effect should be
about 1/3 of the total effect, at most, and practically negligible at
shorter wavelengths. The multiple scattering contribution corre-
sponds roughly to the difference between the F814W and F336W
trends in Fig. 18 (upper or middle frame, whereas the difference
of F336W points from the theoretical single scattering curve repre-
sents the interparticle shadowing factor).

The consistency of the estimated Qms can also be checked by a
direct comparison with simulation models. For example, the ob-
served I/F in the B ring region (for Beff = 26�, a = 6�) can be repro-
duced with an ns = 3.09 power-law phase function by assuming

A336 = 0.21 and A814 = 0.57, when the dynamical model with sdyn =
2.0,Ws = 10 is assumed. The same model implies RB(814) �
RB(336) � 0.04 (with the simulated maximum Qms � 0.06), which
is smaller but still in fair agreement with the DkRB � 0.06 implied
by the observations for the B ring region. On the other hand, for
a Lambert phase function, albedo values 0.36 and 0.87 would be re-
quired for these two filters. This in turn would imply RB(814) �
RB(336) � 0.2 (and Qms � 0.35), a factor of three larger than the ob-
served difference between the two filters. In Fig. 18 (bottom row)
we also plot the modeled DRB as a function of s, for the two phase
functions, using the above albedo values. We conclude that the
particles are significantly more backscattering than Lambert
spheres, and are more similar to those implied by the ns = 3.09
power law. This is consistent with previous studies based on direct
fitting of large range Voyager phase curves (Dones et al., 1993).

The reduction of the B ring tilt effect from a = 6� to 0.5�, which
was shown in Fig. 16, is just what is expected if the elevation-
dependent interparticle shadowing is primarily responsible for
the observed tilt effect. To see this, we may form

RBða¼0:5�;Beff ;s;kÞ�
fiða¼0:5�;kÞfeða¼0:5�;Beff ;sÞþQ msðBeff ;s;kÞ

fiða¼0:5�;kÞfeða¼0:5�;Beff ¼4:5�;sÞ

¼ feða¼0:5�;Beff ;sÞ
feða¼0:5�;Beff ¼4:5�;sÞ

þ Q msðBeff ;s;kÞ
fiða¼0:5�;kÞfeða¼0:5�;Beff ¼4:5�;sÞ :

ð30Þ

Close to opposition, we can approximate fife � 2 in the divisor of
the Qms term, leading to
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Fig. 17. Comparison of the B and A ring tilt effects, for non-opposition (a � 6�) and near opposition (a � 0.5�), for two filters. Since the low phase angle Beff = 4.5� images were
contaminated by spokes, we have made the normalization to Beff = 10�, and omit the affected region (105,000–112,000 km). Note how the B ring positive tilt effect is
marginally larger for the larger k in the case of a � 6�, indicating that some fraction of the brightness increase is due to multiple scattering increasing with elevation, as
proposed by Lumme et al. (1983); however, the contribution is small compared to that of elevation-dependent opposition brightening.
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RBða¼0:5�;Beff ;s;kÞ�
feða¼0:5�;Beff ;sÞ

feða¼0:5�;Beff ¼4:5�;sÞþ0:5Q msðBeff ;s;kÞ:

ð31Þ
According to Fig. 9, the interparticle shadowing factor (the first

term in Eq. (31)) is reduced for a = 0.5� when compared to a = 6�: in
particular, for the narrow Ws = 5–10 size distributions, favored by
the opposition phase curve fits of Section 4, the modeled fe(26�)/
fe(4�) � 1.15, significantly smaller than the �1.3 for a = 6�. This
drop in the magnitude of the interparticle shadowing tilt effect,
from �30% to �15%, is in remarkable agreement with observations
shown in Fig. 16. Also, according to Eq. (31) the contribution from
multiple scattering should be reduced to roughly one-half for the
smaller phase angle. This is consistent with observations showing
a weaker wavelength dependence of tilt effect when a is reduced
(see Fig. 17).

In summary, the interparticle shadowing mechanism, by which
the interparticle opposition peak widens at larger elevations, can
account quite well for the observed positive tilt effect of the B ring.
Additionally, its phase angle dependence – the differences seen be-
tween a = 0.5� and 6.0� – are accounted for; this effect had not
been considered in earlier studies, which concentrated on
a = 6.0�. The increased amount of multiple scattering with eleva-
tion seems to be a secondary effect, accounting primarily for the
slightly stronger tilt effect at longer wavelengths.

5.3. Self-gravity wakes and the negative A ring tilt effect

So far, our model comparisons have been made with non-grav-
itating simulations. On the other hand, Saturn’s A and B rings are

known to possess self-gravity wake structures (Salo, 1992b, see
also Toomre and Kalnajs, 1991; Colombo et al., 1976), responsible
for the optical brightness asymmetry (Camichel, 1958; Lumme and
Irvine, 1976a; Thompson et al., 1981; Franklin et al., 1987; Dones
et al., 1993) and the optical depth variations detected with various
Cassini instruments (Colwell et al., 2006, 2007; Hedman et al.,
2007; Ferrari et al., 2009). Here we address the connection of
wakes to the negative tilt effect observed in the mid A ring. We
model this region with the same two standard self-gravity models
that were used in Salo et al. (2004) and French et al. (2007a) for
studies of the A ring azimuthal brightness asymmetry. In the first
model, identical particles are assumed (IDE), while the second
model (SIZE) employs a q = 3 power law with Ws = 10. In both cases
sdyn = 0.5, internal particle density q = 450 kg m�3 is assumed to-
gether with the Bridges et al. (1984) elasticity law. As shown in
French et al. (2007a), the asymmetry amplitude implied by these
two models brackets the observed asymmetry in HST observations:
the IDE-model yields about 15% too large asymmetry amplitude,
while that of the SIZE-model is about 40% too small. In other re-
spects the IDE model is also clearly better: it matches nicely the
elevation angle dependence of the asymmetry amplitude, and
moreover yields the correct minimum longitude, whereas for the
SIZE model the minimum longitude is off by about 5�; this mis-
match in minimum longitude for the supposedly more realistic size
distribution models was recently confirmed by Porco et al. (2008).
The transmission properties of the models are also in accordance
with low elevation (B = 3.45�) VIMS occultation studies (Hedman
et al., 2007): the IDE and SIZE models imply maximum transmis-
sion probabilities T = 0.09 and 0.02, respectively, while the obser-

Fig. 18. Upper panel: Observed I(Beff = 26�)/I(Beff = 4.5�) vs. Voyager PPS optical depth, plotted in F814W and F333W filters for a = 6�. The dash-dotted curve indicates the
theoretical ratio of singly scattered intensities: the values exceeding this curve indicate positive (B ring) or negative (mid A ring) tilt effect. The middle panel frame shows the
the same, but using scaled intensities: RB ¼ bIð26�Þ=bIð4:5�Þ, where bIðrÞ ¼ IðrÞ=IssðD¼0ÞðsppsðrÞÞ; here, the theoretical singly scattered ratio is unity. Lower row: the difference
RB(F814W) � RB(F336W), which represents the contribution of multiple scattering. Also shown are simulation models using both Lambert phase and ns = 3.09 power-law
phase functions: solid and dotted lines stand for simulations with size distributions of 0.1–5.0 m and 0.5–5.0 m, respectively. The assumed particle albedos for F333W and
F814W filters are 0.36 and 0.87, respectively, when the Lambert phase function is used, and 0.21 and 0.57 in connection with the power-law phase function: with these
assumptions the modeled I/F values for 0.5–5.0 m size distribution match the observations at Beff = 26�, a = 6�.
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vations indicate T � 0.08. Although one can fine tune the strength
of asymmetry in the simulation models (see Fig. 9 in French
et al. (2007a), displaying the effect of changing the elasticity law
or the underlying dynamical optical depth), these two models are
probably sufficient to cover the qualitative effects of the wake
structure on the tilt effect. For comparison, we will also show re-
sults from non-gravitating size distribution simulations with
Ws = 10, both for sdyn = 0.5 and for sdyn = 2.0.

As we discussed in the previous sub-section, the a = 0.5� obser-
vations lie largely inside the interparticle shadowing opposition
peak, regardless of the observing elevation, so there should be no
significant increase of brightness with Beff due to the improved vis-
ibility of the dense central layer. This dependence on phase angle is
displayed in a more quantitative way in Fig. 19, showing the ob-
served (I/F) vs. Beff in the same B and A ring regions for which
the opposition phase curves were studied in the previous sections.
The dense B ring behavior is plotted in the upper left corner,
matched reasonably well by the simulation model (similar to the
SIZE model, but with no self-gravity and with sdyn = 2.0), at both
a = 6� and a = 0.5�.

The importance of including self-gravity when modeling the A
ring is clearly seen in the upper right corner of Fig. 19. Here, the
agreement of the non-gravitating sdyn = 0.5 model with the mid-A
ring tilt curve (upper right corner) is far from satisfactory. The model
curves are almost flat, whereas the observed I/F are monotonically
decreasing with B. The observed brightness difference between the
a = 6� (open circles) and a = 0.5� (filled circles) ring brightnesses is,
however, well described by the difference between the correspond-

ing model curves (dashed and solid lines, respectively). This sug-
gests that the opposition effect-related brightening with Beff acts
in the A ring just as in the B ring, and that the systematic decline is
due to an additional effect missing from the homogeneous non-
gravitating model. Indeed, the strong asymmetry attributed to grav-
ity wakes is expected to be accompanied by a negative tilt effect
(Salo et al., 2004). The two bottom panels display the results for
the two previously introduced self-gravitating models, which again
bracket the observed behavior (note that no attempt was made to fit
the data points). Curiously, for the tilt effect the SIZE model seems to
be closer to observations than the IDE model (the opposite was true
for asymmetry and transmission amplitudes; this probably implies
that some ingredient is still missing from current simulation models
for the A ring gravity wakes).

Gravity wakes have also been inferred for the B ring, but occul-
tation studies (Colwell et al., 2006, 2007) suggest that the gaps in
the B ring are relatively more narrow in comparison to A ring
wakes. Thus their influence on the surface area and the reflection
properties is not so pronounced. This is in accordance with the
weaker reflection asymmetry in HST and radar observations (Nich-
olson et al., 2005; French et al., 2007a). Only in the less dense inner
B ring is the asymmetry amplitude noticeable (French et al.,
2007a). Interestingly, in this same region the tilt effect seems to
be much smaller than in the other parts of the B ring (see
Fig. 16). Still, the interparticle shadowing mechanism seems to
be important in the inner B ring, evidenced by the reduction of
the tilt effect for a = 0.5� (in fact, it turns into a negative tilt effect).
It thus seems that the interparticle shadowing mechanism (pro-

Fig. 19. Comparison of the observed B and A ring tilt effects with photometric models, for a � 6� and for a � 0.5�. We have extracted the intensity at the ring ansa vs. Beff at
the indicated radial ranges. The upper row displays observations for the B and A rings, together with results of photometric models, using non-gravitating particle
simulations, with size distribution from 0.5 to 5.0 m, and with sdyn = 2.0 and sdyn = 0.5. In the lower row, the A ring observations are compared with the self-gravitating SIZE
and IDE models explored in Salo et al. (2004) and French et al. (2007a). The ns = 3.09 power-law phase function with albedo A = 0.5 is assumed.
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moting positive tilt effect) is important for both the A and B rings,
though for the mid A ring, and to lesser degree also in the inner B
ring, the effect of gravity wakes/gaps (providing a negative contri-
bution to tilt effect) needs to be taken into account as well.

6. Discussion and conclusions

The analysis of Hubble Space Telescope near-opposition phase
curves obtained for Beff = 4.5–26.1� shows unambiguously that
the opposition brightening of Saturn’s rings depends on the ring
elevation. This is most strikingly evidenced by Fig. 5, showing
the systematic steepening of the slope of I/F vs. lna when Beff gets
smaller. This previously unreported dependence demonstrates the
unique value of the 1996–2005 HST data set that spans a full Sat-
urn season (Cuzzi et al., 2002; French et al., 2007b). Comparison of
the different filters indicates that, although the magnitude of the
total opposition effect increases toward shorter wavelengths, the
elevation dependent part is practically the same in all filters. This
elevation dependence, and its independence of wavelength, pro-
vide strong observational confirmation for the presence of an inter-
particle shadowing opposition effect, in accordance with
dynamical/photometric simulations (SK2003).

In contrast to the present study, it is not possible from single-
elevation reflection data alone to disentangle the intrinsic (coher-
ent backscattering and/or shadow hiding at particle surfaces) and
interparticle shadowing contributions, since the expected func-
tional forms are rather similar (e.g. Hapke, 2002). This difficulty
is particularly true for the intrinsic SH contribution, which is de-
scribed by the same function that accurately fits the modeled
near-opposition interparticle shadowing, although they might have
different amplitudes and HWHM’s. In principle, the wavelength
dependence of CB might be used to disentangle the various contri-
butions, but unfortunately there is no current theoretical agree-
ment about what kind of wavelength dependence to expect. Also,
the observational picture is not clear, probably because of differ-
ences in available a ranges, and the fitting functions used. Analysis
of high-elevation HST data (French et al., 2007b) implies that the
opposition effect has a nearly constant HWHM �0.1� for BVRI fil-
ters, increasing slightly at U. This is somewhat in contrast to the
analysis of Cassini ISS data (Deau et al., 2009; similarly referring
to high elevation Beff � 22�) that indicates a roughly twofold larger
HWHM, reaching a maximum in the green filter. On the other
hand, Cassini VIMS phase curves suggest that at near-infrared the
HWHM increases rapidly with wavelength, from 0.2� to >1� be-
tween 1.5 lm and 3.5 lm (Hapke et al., 2006).

Polarization measurements would be helpful, since models pre-
dict (Hapke, 1990; Mishchenko, 1993; Rosenbush et al., 1997) that
the CB intensity peak should be accompanied by a similar narrow
peak in the degree of polarization (both circular and linear). Exist-
ing ground based measurements of linear polarization (Lyot, 1927;
Johnson et al., 1980; Dollfus, 1996), although not ruling out such a
peak, do not have sufficient accuracy or wavelength coverage – or
mutual agreement – for quantitative comparison to intensity light
curves. Unfortunately, the polarization capabilities of Cassini are
inadequate for such studies.

Independent support for the interparticle shadowing opposition
effect is provided by the Cassini CIRS measurements, showing a
pronounced opposition effect in the ring’s thermal phase curves
(Altobelli et al., 2009). CB is ruled out, since there can be no inter-
ference between the incoming visual photons heating the particle
and the infrared photons reradiating the heat. Compared to the
strongly peaked visual phase curves the thermal opposition effect
extends over several tens of degrees. However, quantitative com-
parison to the optical phase curve must await detailed thermal
modeling that extends beyond the current models such as those
of Ferrari and Leyrat (2006) and Morishima et al. (2009).

As demonstrated in Section 4, the elevation-dependent part of
the opposition effect in the HST data can be removed via model
comparisons. In practice, we used a set of photometric/dynamical
simulations performed for various optical depths and widths of
size distributions, and used a fixed phase angle range a = 0.5–6�,
where the difference in the observed brightening I(6�)/I(0.5�) for
different Beff’s was compared with that predicted by simulations.
The fact that interparticle multiple scattering is not significant sim-
plified these comparisons, as it was sufficient to compare with the
enhancement factor fe, giving the ratio of the simulated single scat-
tering contribution with respect to the theoretical D = 0 formula.
The deduced interparticle contribution was divided out from the
observations, leaving what presumably represents the intrinsic
contribution fi.

Comparison to simulations, with sdyn = 0.1–2.0, indicated that
the interparticle enhancement fe is quite well fitted with the func-
tional form of the Hapke (1986) shadowing model for semi-infinite
layers. In practice, the finite optical depth affects the maximum
amplitude of fe, which is reduced when the path optical depth de-
creases (this decrease in turn is in good accordance with Lumme
and Bowell (1981) theoretical calculations, see SK2003). The
dependence of HWHM on the width of the size distribution is at
least qualitatively consistent with Hapke’s Y-function. Regardless
of the good agreement with theoretical treatments, the self-consis-
tent dynamical simulations together with photometric modeling
are still indispensable, in order to account correctly for the eleva-
tion-dependent interparticle shadowing, which is sensitive to the
vertical structure of the ring, via the effective volume density Deff

at the layer mainly responsible for scattering. Simulations indicate
roughly linear dependence, HWHM / Beff, which acts in addition to
the size distribution dependence implied by the Hapke’s formula.
Additionally, simulations indicate that HWHM is practically inde-
pendent of sdyn (see Fig. 8).

From their analysis of Cassini ISS phase curves, typically extend-
ing to a � 25�, Deau et al. (2009) found that the slope of the phase
curve outside the opposition peak shows a clear correlation with
optical depth (they used a linear-by-parts fit, and this outer slope
corresponds to linear component beyond a > 0.3�). They conclude
that this steepening is contrary to what would be expected from
interparticle shadowing: they reason that higher sdyn generally im-
plies larger volume density and thus presumably also more ex-
tended interparticle shadowing opposition effect, e.g. phase
curves should have less steep slope outside the central peak due
to the intrinsic opposition effect. Deau et al. (2009) then conclude
that the s dependence of the slope must follow from different par-
ticle surface properties at low and high s environments, rather
than be a result of interparticle shadowing. However, according
to our detailed calculations, the variation of the interparticle shad-
owing effect with optical depth seems consistent with the observa-
tions. For example, Fig. 10 indicates that the slope beyond the
central maximum is generally steeper for larger sdyn’s. The reason
for this behavior is that, although the maximum central plane fill-
ing factor D(z = 0) does indeed increase with sdyn, the optical prop-
erties are determined by Deff at the layer dominating the scattering.
The fact that we found the HWHM of fe to be nearly independent of
sdyn suggests that the variations in Deff are much smaller than
those in D(z = 0). On the other hand, the maximum amplitude of
fe does increase with sdyn, until saturation is reached at large spath.
This, together with nearly constant HWHM, accounts for the in-
creased slope. Therefore, our conclusion is that the s dependence
of the outer slope gives additional support for the interparticle
shadowing effect. Of course, there may be additional indirect cor-
relations between particle surface properties and local optical
depth as suggested by Deau et al. (2009).

Based on the elevation-dependent part of the observed opposi-
tion effect, we find that the C ring region we study is best described
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by an extended size distribution with Ws J 100, whereas for the A
and B rings a significantly narrower Ws [ 5–10 is deduced. The
estimated C ring lower bound is consistent with French and Nich-
olson (2000), who found Ws � 1000 from the analysis of forward
scattered light in ground based stellar occultation data. However,
for the A and B rings our upper bound is definitely smaller than
Ws � 70 found by French and Nicholson (2000): most likely this
discrepancy follows from the fact that the uniform ring models
we have studied are too simple to describe all aspects of ring
reflection and transmission.

In our models, the Bridges et al. (1984) coefficient of restitution
and a power law size distribution with q = 3 was assumed. The
dominant factor affecting the fit is the volume density Deff, which
depends not only on the size distribution, but also on the elasticity
of particles. Less dissipative particles lead to collisional energy bal-
ance corresponding to geometrically thicker rings, whereas in-
creased dissipation flattens the rings, until a minimum thickness
corresponding to few times the maximum particle radii is achieved
(see e.g. Schmidt et al., 2009). Thus, for significantly less dissipative
particles,8 say with the scale factor vc = 10vB in Eq. (14) instead of
vc = vB, the best fit for the C ring would be obtained for a size dis-
tribution with Ws J 10 (combined with the resulting vertically
thicker ring, Ws = 10 would lead to roughly the same Deff as the ori-

ginal Bridges et al. elasticity formula in combination with Ws = 50).
Clearly, such a narrow distribution would be very hard to reconcile
with French and Nicholson (2000) estimates. On the other hand,
even if the particles were more dissipative than implied by the
Bridges formula (say, having a constant �n = 0.1), the best fit for B
and A rings would still imply a fairly narrow Ws � 10. In conclu-
sion, we cannot claim that any unique formula for the elastic prop-
erties of particles could be deduced from the matching of the
elevation-dependent opposition effect, taking into account the
uncertainties in the size distribution. However, it seems that the
match in terms of a Bridges et al. (1984) type, frosty particle elas-
ticity model, is a fairly robust one, and suggests a significantly
wider size distribution in the C ring in comparison to B and A rings.
Most importantly for the current goal, the deduced intra-particle
opposition effect contribution is not overly sensitive to which par-
ticular simulation model is used in the extraction of fe, as long as it
can correctly account for the elevation angle dependence.

After removal of the interparticle opposition effect, fits to the
intrinsic opposition effect were made, using both linear-exponential
and Hapke-model fits (the SH part of the latter models was simpli-
fied, as only the near-opposition part of phase curve is fitted). Both
types of fits imply that the intrinsic effect is mainly due to CB (in lin-
ear-exponential model this can be identified with the exponential
component). In fact, for the B and A rings the intrinsic SH contribu-
tion is almost negligible: the fitted SH component is very close to
what is implied by the ns = 3.09 power-law phase function used in
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Fig. 20. Modeled contributions to the C ring opposition effect, measured in terms of I/I(6�), shown for Beff = 23� and Beff = 4.5� (upper and lower frames, respectively), on
logarithmic (left) and linear (right) scales. The models are for F336W filter: the vertically banded shaded regions indicate the SH (gray) and CB (black) contributions to the
intrinsic component, obtained from a SH–CB fit to HST data from all elevations, after removal of the modeled interparticle contribution; they are identical for both Beff’s. The
shaded region indicates the interparticle contribution, which depends on Beff. The interparticle contribution is calculated for the best fitting model of Section 4 (dynamical
optical depth sdyn = 0.1, Ws = 50, Bridges et al. (1984) coefficient of restitution formula; photometric calculations use a Lambert law with A = 0.5). Symbols indicate the HST
observations at the F336W filter, for the indicated Beff. The dashed line indicates the relative change of an ns = 3.07 power-law phase function.

8 Such systems are potentially quite interesting, as they can be susceptible to
viscous instability (see Salo and Schmidt, 2010).
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Dones et al., 1993, when extrapolated to near-opposition phase an-
gles. For the C ring, the deduced intra-particle SH is less than half of
the implied coherent backscattering contribution. Compared to the
earlier fits based on the original high-elevation HST data, without
separation of the interparticle effect (French et al., 2007b), there is
rather little difference in the deduced CB parameters. In particular,
the amplitude Bc0 � 0.4 for all ring components, as in fits to the ori-
ginal data, whereas the HWHM � 0.1� is slightly increased. Never-
theless, in any careful analysis of the intrinsic opposition effect
aiming to deduce, for example, the regional variations in the proper-
ties of regolith-grains covering particle surfaces, the elevation
dependent part should first be excluded. For example, the difference
in the deduced SH components between the C ring and the higher
density B and A rings, not distinguishable without exclusion of the
interparticle shadowing, might reflect the different collisional envi-
ronments in the ring components.

The various modeled contributions are best illustrated in Figs. 20
and 21, for the C and B rings, respectively. (The A ring case would be
almost indistinguishable from the B ring.) The CB and SH contribu-
tions are shown separately by the black and gray shaded regions;
these are identical in the upper and lower frames, corresponding
to Beff = 23.5� and 4.5�. The modeled interparticle shadowing contri-
bution is shown by the dashed region, which is much more pro-
nounced for the lower elevation. Also shown are the HST data
points corresponding to the indicated Beff. (Note that the the models
are based on fitting simultaneously the whole range of Beff’s.) To
emphasize the extremely narrow CB peak, the phase curves are also
shown on a linear scale in the right-hand frames.

For comparison with spacecraft observations, we predict the
behavior of the intraparticle shadowing effect for phase curves be-

yond the regime accessible by ground based studies (a < 6.37�) in
Fig. 22. This shows the single scattering contribution for our
adopted B ring model, now covering a full range 0� 6 a 6 180�.
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Fig. 21. Same as Fig. 20, except for the B ring region. The interparticle shadowing model is calculated for dynamical optical depth sdyn = 2.0, Ws = 5, Bridges et al. (1984)
coefficient of restitution formula.
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Fig. 22. The behavior of the modeled B ring I/F for a full range of phase angles
(dynamical optical depth sdyn = 2.0, Ws = 5, Bridges et al. (1984) coefficient of
restitution formula is assumed; together with Lambert phase function with Bond
albedo A = 0.5). At left, the single scattering contribution is shown, for three
different Beff’s. For comparison, the classical D = 0 single scattering contribution is
also shown by a dashed line. At the right, the same single scattering model curves
are shown, normalized to D = 0 curve. Also shown by dashed lines are correspond-
ing ratios when both single and multiple scattering are included.
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Three different elevations are compared, as well as the elevation-
independent theoretical D = 0 curve, following in form the spheri-
cal-particle Lambert phase function. According to Fig. 21, the
intrinsic peak would affect just a very narrow portion near zero
phase angle. On the other hand, as mentioned previously, the inter-
particle shadowing contribution extends to all phase angles. In fact,
the relative brightening over the classical (D = 0) multilayer starts
to increase again beyond a � 50�. Clearly this is no longer an
‘‘opposition effect,” but relates to a general reduction of shadowing
in geometrically thin layers of particles (see footnote 5). Neverthe-
less, in practice this enhanced Iss has little significance, since it is
offset by an even larger reduction in the multiple scattering contri-
bution (Fig. 22 right panel; see also Fig. 7 in SK2003). Since multi-
ple scattering dominates at high phase angles, the total brightness
I/I(D = 0) is reduced. It was shown in SK2003 that this combination
of geometrically thin layers appearing brighter in backscattering
and dimmer at forward-scattering makes it possible to match
simultaneously both the low and high phase angle brightnesses
of the inner A ring. Indeed, for this ring region, Dones et al.
(1993) found that the phase curve from Voyager images cannot
be accounted for by classical radiative transfer models, and sug-
gested that this might be due to geometrically thin rings. Clearly,
a similar effect needs to be taken into account in the interpretation
of Cassini ISS observations. In particular, by combining observa-
tions from several different elevations, one can eliminate the
uncertainties related to particle phase function and albedo, and de-
duce constraints for the ring vertical profile and size distribution.9

The characteristics of the B and A ring tilt effects were explored
in Section 5. We showed a new observational result: the strong po-
sitive B ring tilt effect seen at a = 6� (the phase angle most often ad-
dressed in ground based studies) is significantly weakened when
observations at a = 0.5 are compared. We showed that the tilt ef-
fect itself, as well as its smaller amplitude as a ? 0�, follow in a
natural manner from the same models which match the eleva-
tion-dependent opposition effect. Briefly summarized, at low Beff

the width of interparticle opposition peak is much less than 6�,
so that near-opposition brightening has no contribution to the ring
brightness. On the other hand, when Beff increases the opposition
peak gets wider, leading to an increased contribution to the bright-
ness. For example, the best-matching B ring interparticle shadow-
ing model has HWHM � 1–10�, for Beff = 4–26� (see Fig. 8). Clearly,
at phase angles smaller than the minimum width, the interparticle
contribution is present regardless of Beff: this accounts for the re-
duced tilt effect for a = 0.5�. The A ring negative tilt effect was
attributed to gravitational wakes, which have a larger effect on
the reflection in the moderate-s A ring (and the inner B ring) in
comparison to the densest part of the B ring. Nevertheless, the
shadowing contribution was also present, evidenced by the differ-
ence between a = 6� and a = 0.5�.

The dependence of the expected B ring tilt effect as function of
phase angle is further illustrated in Fig. 23: here, the second and
third frames show the a = 0.5� and 6� cases discussed just above.
(Note the arbitrary normalization to Beff = 1�.) The first frame is
for exact opposition, where the predicted interparticle contribu-
tion to the tilt effect practically vanishes (the small residual effect
follows from the weak dependence of maximum fe on path optical
depth). In the figure, the modeled tilt effect is shown separately for
single scattering and for total brightness (single + multiple scatter-
ing): the difference between these indicates the contribution due
to increased multiple scattering when Beff increases. Also shown
in Fig. 23 is the expected B ring tilt effect for phase angles >6�.
Clearly, if the brightening of Iss in the case of non-zero D were lim-
ited to near opposition, there would be no shadowing contribution
to the tilt effect for a larger than the width of the opposition peak.
However, due to the aforementioned general brightening of geo-
metrically thin layers, the tilt effect due to enhanced Iss is present
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Fig. 23. Comparison of the modeled tilt effect for a range of phase angles: the dynamical/photometric parameters are the same as in Fig. 22.

9 Porco et al. (2008) claim to have deduced accurate ring thicknesses, based on
small deviations between the observed and modeled D = 0 phase curves, repeating
calculations such as described in SK2003. However, there are problems in their
approach: for example, they assume that the ring particle phase function is
determined precisely by a power-law phase function, and use two observations to
deduce simultaneously three unknown parameters: the ring thickness, the particle
albedo, and the index ns of a power-law phase function. Moreover, the ring models
they use are not dynamically self-consistently calculated size distribution models:
they assume a Gaussian distribution of identical particles, which assumption is prone
to affect the resulting model brightness (see e.g. Fig. 21 in SK2003). Apart from these
considerations, there also seem to be some problems in the convergence of their
model results when the classical limit should be reproduced exactly (see their Figs.
10–13).
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for all a0s: the strength of the effect is proportional to the difference
between the various Beff curves in Fig. 22. Additionally, for
a J 120� the multiple scattering contribution to the tilt effect
should become more and more important.

The effect of elevation-dependent interparticle shadowing, seen
in the HST observations, should be present also in the Cassini ISS,
VIMS, and CIRS data, particularly for the recent epoch with low so-
lar elevation. In fact, the effect might be noticeable also for
Beff � 15–25�, for which range Cassini data have already been ana-
lyzed. For example, often phase curve data from different tilt an-
gles are combined together: it will be important to determine
what influence this has on the fitted parameters (e.g. on the
HWHM of the opposition peak). Also, removing the wavelength-
independent interparticle opposition effect will affect the relative
amplitudes of the intrinsic opposition peak deduced at different fil-
ters: obtaining an unbiased view of the wavelength trends of oppo-
sition peak is important for the physical interpretation of the
observations. Our plan for the future is to expand our photometric
modeling to cover a larger range of observing geometries relevant
for Cassini, and moreover cover a larger set of dynamical models.
Clearly, this will help to provide improved constraints for both
the photometric properties of ring particles, as well as for the local
structure of rings, influenced by the particles’ physical properties
and their size distribution.
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Colwell, J.E., Esposito, L.W., Sremčević, M., 2006. Self-gravity wakes in Saturn’s A
ring measured by stellar occultations from Cassini. Geophys. Res. Lett. 33,
L07201.
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