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Simulating the Formation of Fine-Scale Structure in Saturn’s Rings

Heikki Salo∗)

Division of Astronomy, Department of Physics, PL 3000,
FI-90014 University of Oulu, Finland

Planetary ring dynamics is reviewed, based on the results of local 3-dimensional simula-
tions, which utilize a co-moving calculation cell with periodic boundary conditions. Various
factors affecting the local balance between collisional dissipation and viscous gain of energy
from the systematic velocity field are considered, including gravitational encounters and col-
lective gravitational forces besides physical impacts. Simulation examples of the effects of
different forms of the coefficient of restitution are given. Viscous stability properties are also
discussed: examples of both instabilities and overstabilities are given and briefly discussed
in the context of observed structures in Saturn’s rings.

§1. Introduction

Saturn’s rings consist of cm to meter-sized icy particles revolving on nearly cir-
cular, almost co-planar orbits. The ring evolution is governed by the orbital motion,
the frequent impacts between ring particles, their mutual self-gravity, and the pertur-
bations exerted by both external satellites and by embedded moonlets. In the dense
main rings (the A and B rings) particles collide even 10–100 times per orbital revolu-
tion. Although the orbital velocities are ∼ 20 km/s, the random velocities related to
orbital eccentricities and inclinations are small, indicating impact velocities below ∼
0.5 cm/s (corresponds to ring vertical thickness ∼ 10 meters). Such gentle impacts do
not lead to fragmentation, but still dissipate a significant fraction of random kinetic
energy in each collision. This loss is balanced by the viscous gain of energy from the
differential rotation around the planet (orbital speeds increase inward), establishing
a local steady-state in a time scale of few tens of impacts/particle.16),21), 56) Details
of the resulting balance (velocity dispersion, geometric thickness, viscosity) are de-
termined by the frequency and elasticity of impacts, and the internal density and size
distribution of particles.43) Depending on the implied viscosity-density relation, the
ring can be either stable or unstable against the growth of local perturbations. For
example, dense rings composed of quite inelastic particles can become viscously over-
stable, which is likely to relate to the strictly axisymmetric small-scale oscillations
observed in several locations of Saturn’s A and B rings.9), 58)

The importance of ring particles’ mutual gravity for shaping the local structure
of Saturn’s rings has been strikingly demonstrated by the Cassini stellar8),9), 19) and
radio occultation measurements,58) which confirm the presence of unresolved trail-
ing structures (self-gravity wakes41)) throughout the A and B rings. These struc-
tures arise as a superposition of tiny perturbations excited around each individual
ring particle, amplified by the interplay of shear and gravity (swing-amplification
mechanism61)). Such structures were envisioned by Alar Toomre already decades
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ago,23) though in a very different context (and scale — kpcs rather than meters),
as a suggestion of how to create and maintain spiral structure in galactic disks.
The crucial ingredient in planetary rings is the mutual dissipative impacts between
particles, which keep the ring dynamically cool and thus reactive to gravitational
disturbances. Self-gravity wakes are just one example: similarly the excitation of
spiral density waves at the satellite resonance locations has the clearest manifesta-
tion in Saturn’s rings;7) Saturn’s rings also provide the most extreme examples of
disk warping,20) and the effect of embedded mass concentrations on the surrounding
particles (‘propellers’).12)

This paper reviews numerical simulations of self-gravitating, mutually colliding
particles, using a local method (Appendix A) where the evolution of a small co-
moving ring patch is followed. Besides illustrating the basic mechanisms leading
to local energy balance (§2), simulation examples of self-gravity wakes (§3) and
nonlinear structures resulting from viscous overstability and instability are presented
(§4). For detailed theoretical background (covering also perturbations by external
and embedded satellites, see Ref. 51); also the articles by J. Burns, K. Ohtsuki, and
J. Schmidt in these proceedings).

§2. Local energy balance

The fundamental quantity describing both the dynamics and observed structures
of Saturn’s rings is the geometric optical depth τ , defined as the fractional surface
area covered by particles. One peculiarity of ring dynamics is the independence of
impact frequency ωc from the velocity dispersion c,

ωc ∼ 3τΩ ∼ 20τ impacts/orbit, (2.1)

where Ω is the angular orbital frequency. This results from the partitioning of vertical
and horizontal random motions in impacts, which, combined with the fact that
the particles are revolving around the planet, implies that any increase in velocity
dispersion is compensated by the corresponding thickening of the ring, which leads
to reduced space density.∗)

Locally, the ring establishes a steady-state between the viscous gain of energy
from the differential rotation associated with the orbital motion and the energy
dissipated in inelastic impacts. The time-scale to achieve this is a few tens of impacts
per particle, or just a couple of days for τ & 1. On much longer time-scales, the
intrinsic ring evolution is determined by the radial flow of angular momentum: the
stability properties of this flow depend sensitively on the elastic properties of particles
via the implied local energy balance. The crucial factor is the functional dependence
of steady-state viscosity ν on density, parameterized as ν ∝ τβ .

∗) The basic formula is ωc ∝ nscσc, where ns is the space number density, c is the 1-dimensional

velocity dispersion and σc the collisional cross-section: σc = 4πR2 assuming identical particles with

radius R. The space density ns ≈ n/H, where n = τ/(πR2) is the surface number density and H

the vertical thickness. Due to collisional coupling of horizontal and vertical motions, cz ∼ c, while

due to orbital motion H ∝ cz/Ω. The explicit ns and c dependence thus cancels out, leading to

formula (2.1). Note that self-gravity can lead to significantly enhanced ωc (§3).
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The main source of dissipation is the inelasticity of impacts, measured by the
normal coefficient of restitution εn,

Ėdiss = k1 ωc c2(1 − εn
2), (2.2)

(k1, like k2 and k3 below is a numerical factor of order unity; in the case of velocity-
dependent elasticity εn is defined as an effective mean value averaged over impacts.)
The gain is proportional to kinematic viscosity and the square of the shear rate,

Ėgain =
(

r
∂Ω

∂r

)2

ν ≡ s2ν. (2.3)

For particles orbiting a central planet Ω(r) ∝ r−3/2 so that s = −3
2Ω. In the case of

non-gravitating particles, the viscosity is usually divided to two contributions, the
local viscosity νl associated with the transport of angular momentum via the parti-
cle’s radial excursions, and the non-local viscosity νnl resulting from the momentum
transferred from one particle to another during a collision (the gravitational viscos-
ity νgrav arising due to torques exerted by non-axisymmetric collective structures
formed via self-gravity is discussed in §3). The basic expression for local viscosity is
νl = ωcλ

2, where λ is the radial mean free path. In the high impact frequency regime
the impacts limit the mean free path to λ ∼ c/ωc while for low ωc an upper bound is
set by the amplitude of epicyclic excursions, λ ∼ c/Ω. Combining these estimates16)

νl = k2 ωcc
2/(ωc

2 +Ω2). For the nonlocal momentum transfer, νnl = k3 ωcR
2, where

R is the particle radius. The energy balance Ėdiss = Ėgain thus implies

k1 ωc c2(1 − εn
2) =

9
4
ωcc

2

[
k2

1 + (ωc/Ω)2
+ k3

(
RΩ

c

)2
]

. (2.4)

Although Eq. (2.4) is based on simple heuristic arguments,56) it describes qual-
itatively quite well the simulated behavior for a given elasticity of particles. In
particular, if the system is very hot, c/(RΩ) À 1, the nonlocal gain term can be
ignored, and the energy balance requires that the effective value of εn attains a crit-
ical value εcr, which (approximating ωc ∼ Ωτ) depends on the optical depth via the
well-known Goldreich-Tremaine formula16)

(1 − εcr
2)(1 + τ2) =

9k2

4k1
≈ 0.61. (2.5)

In the case of constant εn > εcr, no energy balance can be achieved, as the dissipation
is then too weak to balance the local viscous gain: the system disperses via continu-
ously growing random velocities. The critical εcr increases with τ (Fig. 1), since the
reduced mean free path between impacts limits the local gain: εcr(τ → 0) ≈ 0.65,
while εcr(τ = 1) ≈ 0.8∗) On the other hand if the constant εn < εcr, the dissipation
exceeds the local viscous gain, leading to reduced eccentricities and inclinations. The
eventual steady-state is then determined by the nonlocal viscous gain (second term

∗) Allowing for tangential friction in impacts would shift εcr even closer to unity, as the frictional

loss would add to the dissipation due to inelasticity.32),40)
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Fig. 1. The solid line indicates the Goldreich-Tremaine εcr(τ) relation. Systems with constant

εn < εcr(τ) (shaded region) flatten toward a stable near-monolayer state, while those with

εn > εcr(τ) disperse via growing random velocities. Also shown is an approximative critical

curve for a flat velocity field with s/Ω = −1 (dashed line; obtained by replacing 9/4 with 1 in

2.5): the energy gain from systematic velocity is reduced, allowing energy balance take place for

εn closer to unity. Symbols indicate effective values of εn attained in dynamically hot simulations

with c/(ΩR) À 1, thus approximating the conditions leading to 2.5).

on rhs of (2.4)), and corresponds to a flattened system where the geometric thick-
ness is of the order of few particle diameters, H ∼ R (in terms of random velocities
c ∼ RΩ).

In the realistic case εn depends on the impact velocity vn. The value of steady-
state velocity dispersion depends then on the form of εn(vn), as the system adjusts its
effective εn according to Eq. (2.4). The steady-state can range from a thick multilayer
(H À R) to a near monolayer ring (H ∼ R). The laboratory measurements in
Refs. 5) and 18) indicated that εn drops to values significantly below unity already
for impact velocities of the order of 1 cm/sec. However, the exact form of εn(vn)
relation is sensitive to the surface properties of ice — hardly known for the physical
conditions of the rings — as well as on the particle size, via the curvature of the
impact point.

Figure 2a) depicts two elasticity model curves, illustrating the wide range of
uncertainty concerning particles’ elastic properties. The large uncertainty reflects
directly to the simulated steady-state. A system of fairly elastic ‘smooth’ particles is
dynamically hot at low τ (Fig. 2b)) but exhibits a large (by a factor ∼ 5) reduction
of velocity dispersion as τ & 1, basically because of the above-mentioned suppression
of the local viscous gain as the mean free path shortens: the behavior corresponds
closely to the mass-point simulations depicted in Fig. 1. On the other hand, the
dynamically cool ‘frosty’ particle model has a nearly constant velocity dispersion
with τ , behaving like a constant εn < εcr.

Most importantly, the two elastic models lead to a qualitatively different ν vs τ
relation and thus have different viscous stability properties (Figs. 2c) and d)). For
the smooth particle model the drop in νl is so strong that it establishes β < −1 for an
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Fig. 2. a) Two elasticity models based on laboratory experiments, illustrating the range of un-

certainty concerning particles’ physical properties. The solid curve refers to measurements of

frost-covered ice,5) εn(vn) = 0.32(vn)−0.234 < 1, and dashed curve to particles with compacted-

frost surfaces (20 cm particles at temperature of 123 K),18) εn(vn) = 0.90e−0.22vn + 0.01vn
−0.6

(vn expressed in cm/sec). b) Simulated radial velocity dispersion crad in units of RΩ. c) Kine-

matic viscosity in units of R2Ω: dashed line shows separately the local contribution. d) The

slope of ν ∝ τβ relation: values of β < −1 (filled diamonds) indicate viscous instability, while

β & 1 (filled boxes) corresponds to viscous overstability.

interval 0.6 . τ . 2; eventually νnl takes over and β increases again. Such a system
is prone for viscous instability. On the other hand, the frosty particle model implies
a monotonically increasing ν due to the nonlocal part, with β even exceeding unity
for τ & 4, indicating that the system becomes susceptible to viscous overstability.
Note that the simulations used in Fig. 2 for tabulating the steady-state properties are
all stable: the system size (. 50 particle radii) has deliberately been kept smaller
than the minimum unstable wavelengths, thus suppressing any instabilities which
would rise in larger systems.∗) In §4 direct examples of both viscous instabilities
and overstabilities are shown, using larger-scale simulations. However, before that
§3 describes the effects of self-gravity, which has a significant effect on the viscosity.

∗) To reduce the statistical noise following from a small system size and a small particle number

(N = 500 − 4000), the simulation values were collected as time averages over at least 100 orbital

periods, once the steady-state was established within the first few or few tens of orbital periods.
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§3. Ring self-gravity

The rings of Saturn reside inside the planet’s Roche-zone, so that direct gravita-
tional accumulation of ring particles to form a satellite is prevented by the disruptive
effect of planet’s tidal force. Also, the total mass of the rings is only ∼ 10−8Mplan.
Nevertheless, due to the low velocity dispersion maintained by the frequent dissipa-
tive impacts, the mutual gravity between particles can have a strong effect on the
ring structure and evolution, depending on the local ring density and the distance
from the planet.

At low τ the main effect is the gravitational scattering in close binary encounters.
Since these correspond to totally elastic impacts, they conserve the kinetic energy
of the encountering pair, while the deflection of the orbits transports energy from
systematic motion to random motions. This extra heating increases c until it becomes
comparable to particles’ escape velocity.11), 21) When the surface density Σ increases,
the collective effects become important. For example, in the dense B and A rings, the
vertical self-gravity exceeds the vertical component of the central force. This means
significantly enhanced impact frequency, and reduced vertical thickness (Fig. 3). As
a consequence, the viscosity (due to enhanced νnl) rises much steeper with τ than in
the absence of vertical gravity.

However, whenever the vertical field becomes important, the system is also near
the threshold of collective gravitational instability. Reference 60) showed that a
self-gravitating differentially rotating particle disk is locally unstable against the
growth of axisymmetric disturbances if its radial velocity dispersion falls below the
critical value ccr = 3.36GΣ/Ωr, where G is the gravitational constant and Ωr the
epicyclic frequency, nearly equal to Ω in planetary orbital motion. The closeness to
the stability boundary is measured by the Toomre parameter

Q = crad/ccr. (3.1)

While Q ≥ 1 guarantees axisymmetric stability, already for Q . 2 − 3 the system
is susceptible to the growth of local non-axisymmetric disturbances.23) This near-
instability manifests as the emergence of trailing filamentary density enhancements,
gravity wakes. In Keplerian velocity field they form ∼ 20◦ angle with the tangential
direction, while the radial separation is comparable to Toomre’s critical wavelength

λcr = 4π2GΣ/Ωr
2. (3.2)

Thus with the inclusion of full self-gravity (Fig. 3c)), the picture is completely differ-
ent from that when only the vertical component is taken into account. In particular,
the viscosity is strongly enhanced.

Figure 4 displays wake structure in simulations where the calculation region
is large enough to accommodate several wakes.∗) It also illustrates the role of
wakes/impacts in establishing a ‘thermostat’, keeping the system near the state
Q ∼ 2. In the case of stellar systems, originally studied by Toomre, the gravitational

∗) As a rule of thumb, the simulation system should cover 4λcr × 4λcr, or preferentially more,

to assure that the strength and orientation are not affected by the periodic boundaries42),45)
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Fig. 3. Snapshots from 2λcr × 2λcr simulations with τ = 0.75, using the frosty particle elasticity

model. In a) self-gravity is ignored, in b) only the vertical component and in c) all components

of self-gravity are included. Frames d)–f) compare the impact frequency (normalized by Ωτ),

the vertical thickness, and the kinematic viscosity as a function of optical depth. In the self-

gravitating cases, solid ice density ρ = 900 kgm−3 is assumed. At the simulated Saturnocentric

distance 100 000 km this corresponds to rh = 0.82 according to Eq. (3.4).

scattering accompanying these disturbances heats the system so that the wakes are
eventually suppressed — in the case of particulate rings, the collisional dissipation
leads to a statistical steady-state, where new structures continuously emerge and
dissolve in timescale comparable to orbital period. As stressed by Toomre,62) the
gravity wakes do not represent any instability in the sense that there would be strict
threshold for the onset of wake structure; rather they manifest the reactivity of the
system when Q is sufficiently small. In particular, any small leading perturbation,
while evolving into a trailing one due to shear, is significantly amplified by the inter-
play of gravity and differential rotation (‘swing amplification’61)) The wake structure
can be interpreted as a superposition of numerous individual wakes, excited by each
particle when other particles flow past it. This picture is confirmed by the auto-
correlation analysis of wakes.42), 45), 62)

In the non-gravitating case the optical depth τ and the particle elasticity εn

determine the ring structure (in addition to particle size distribution). With the
inclusion of self-gravity, one additional parameter is sufficient to characterize the
importance of both the pairwise and collective gravitational effects. This is the rh

parameter, the ratio of the mutual Hill-radius for a pair of particles to the sum of
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Fig. 4. Initial evolution in 8λcr × 8λcr simulations starting with a hot (Q = 5) and cold (Q = 0)

uniform initial state. The parameters are τ = 0.5, rh = 0.82, and εn = 0.5.

their physical radii,

rh(µ) =
RHill

R1 + R2
=

(
ρ

3ρplan

)1/3 (
r

rplan

)
(1 + µ)1/3

1 + µ1/3
, (3.3)

where ρ is the internal density of the ring particles, and µ = M1/M2 = (R1/R2)3

is their mass ratio. Here RHill = ((M1 + M2)/3Mplan)1/3r is the radius of the Hill-
sphere, where mutual gravity dominates over the tidal pull from the planet at the
distance r. When rh decreases, the particle pair, due to their physical size, extends
more and more out from their Hill-sphere: rh = 0 corresponds to the nongravitating
case, while in the case rh = 1 the attraction between two synchronously rotating,
radially aligned ring particles in contact equals the disruptive tidal force. For µ = 1,
inserting the typical parameters for Saturn’s rings yields

rh(µ = 1) = 0.82
( Mplan

5.69 · 1026 kg

)−1/3( ρ

900 kgm−3

)1/3( r

100 000 km

)
. (3.4)

For a test particle attached to a large particle, the rh is a factor 22/3 ≈ 1.59 larger;
in the following we denote rh(µ = 1) simply by rh. Assuming solid ice density
(ρ = 900 kgm−3), the main rings of Saturn extend rh = 0.6 − 1.1: with the formula
(3.4), the results for a given rh can be scaled to any other ρ1/3r combination.

Figure 5 depicts a simulation survey of wake structures for εn = 0.5. The
strength of wakes increases when the optical depth τ , or the distance (measured
with rh) increases. The wakes also get clumpier and eventually degrade into semi-
permanent gravitational aggregates for rh & 1.2. Same takes place at low τ via
pairwise accumulation. The exact boundary depends on the elasticity of particles
and also the particle size distribution.24), 42) The fact that rh > 1 is required for
stable aggregates to form is because not only shear, but also particle impacts and
velocity dispersion acts to destroy any forming condensations.

The insert in Fig. 5 sketches the parameter regimes where different factors (im-
pacts, encounters, wakes) dominate the dynamics, based on the velocity dispersion



Simulating Saturn’s Rings 9

Fig. 5. Survey of self-gravity wakes as a function of rh and τ , for constant εn = 0.5. The labels r

indicate the Saturnocentric distance (in units of 1000 km) for particles with solid ice internal

density: for other densities the distances scale ∝ (900 kgm−3/ρ)1/3. The size of the simulation

system is 4λcr × 4λcr, thus scaling with the size of the wakes (λcr/R ≈ 150τrh
3); the side view

covers 4λcr × 1λcr. The number of simulation particles N ≈ 116 · 103τ3rh
6. The insert sketches

the regimes where various physical factors dominate, based on the estimates given in the text.

The dashed curves indicate Q = 2 in terms of crad/(RΩ): at the boundary between wakes and

impacts Q = 2 corresponds to crad/(RΩ) = 3.

this factor alone would be able to maintain.36), 42), 51) For a constant εn . 0.5 (or the
frosty particle model of Fig. 2) the minimum velocity dispersion due to impacts is
cimp/(RΩ) ∼ 3. Similarly, the gravitational encounters maintain a minimum veloc-
ity dispersion cenc ∼ vesc, where vesc =

√
2GM/R is the escape speed. This can be

expressed as cenc/(RΩ) ≈ 5rh
3/2. The gravitational encounters thus dominate over

physical impacts for rh & 0.7. A rough criterion for the collective wake-structure is
obtained by assuming that they appear whenever the minimum velocity dispersion
drops below Q ∼ 2. This corresponds to cwake/(RΩ) ∼ 10Qτrh

3 ∼ 20τrh
3. Thus

cwake > cimp (or cwake > cenc) defines the sketched boundary between wakes and
impacts (or encounters). The other dashed curves in the insert indicate where Q = 2
corresponds to crad/(RΩ) = 5, 10, 20.

The effect of gravity wakes on viscosity is depicted in Fig. 6. For τ & 0.5 and
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Fig. 6. Comparison of various contributions to total viscosity, in a) as a function of rh for τ = 0.5

and b) as a function of τ for rh. They correspond to the εn = 0.5 simulations depicted in Fig. 5.

The insert in b) displays the slope of ν ∝ τβ , reaching values β ≈ 2 for τ ∼ 1; for comparison

nongravitating simulations (dashed curve) and simulations with just vertical self-gravity (solid

curve are also depicted.

rh & 0.75, the νgrav contribution associated with the gravitational torques from in-
clined wakes become dominant.13),57) Also νl is strongly enhanced due to systematic
motions associated with the wakes, whereas the νnl is almost insignificant. Sys-
tematic motions also lead to local vertical thickening when individual wakes clash
together, seen in the vertical profiles of Fig. 5. The results of Fig. 6 agree with the
trends originally found,13)

νtot ≈ (νgrav + νl) ≈ 2νgrav ∝ rh
5G2Σ2/Ω3. (3.5)

The Σ2 (∝ τ2 in the figure) dependence is similar to the standard continuum fluid
formula for spiral torques in galaxy disks,30) while the rh dependence can be inter-
preted as an effect related to finite size of particles: the smaller the rh, the closer is
the scale of wakes compared to physical size of particles. This limits the maximum
contrast the wakes can attain (spatial density of wakes is limited by the internal
density of particles).

In the above wake survey (Fig. 5), εn = 0.5 was adopted. In the case of more
dissipative impacts (or with the ‘frosty’ particle model of Fig. 2), the overall picture
would be more or less the same. However, for less dissipative impacts the wake struc-
ture can be significantly weaker for a given τ and rh. For example, using the same
parameter values as in Fig. 3c), there is hardly any trace of wakes in a correspond-
ing simulation using the smooth particle model of Fig. 2. This is to be expected,
since according to Fig. 2b), the impacts alone will now maintain crad/(RΩ) ∼ 20
at τ = 0.75; this corresponds to Q ≈ 5, thus suppressing any wakes. On the hand,
the same smooth particle elasticity model leads to clear wake structure for τ & 1.
(Fig. 7).
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Fig. 7. Comparison of simulations with frosty

and smooth particle elasticity models for

τ = 0.75 and τ = 1.5. Snapshots are from

2λcr × 2λcr simulations with rh = 0.82.

The wake structure is also affected
by the particle size distribution (Fig. 8).
Although the large particles still form
distinct wakes, the overall contrast is re-
duced due to the more uniform distribu-
tion of small particles. This implies that
a system can exhibit dynamically signif-
icant wake structure, though it might
be more hidden in photometric obser-
vations.45)

Several types of observations have
confirmed the existence of self-gravity
wakes in Saturn’s rings: although unre-
solved (wake scale ∼ 100 meters), they
lead to a global signature on how the
rings reflect and transmit light. For ex-
ample, the long-known azimuthal bright-
ness asymmetry∗) is quantitatively ex-
plained17), 38), 45) by the trailing wakes,
systematically tilted by ∼ 20◦ with respect to azimuthal direction. Wakes are de-
tected in the radar-echo of rings,34) as well as on how the Saturn microwave radi-
ation is transmitted through the rings.15) The estimates of ring viscosity based on
the damping of A ring density satellite density waves59) also agree with the νgrav

formula of Ref. 13). Currently the wakes are probed in detail via the various Cassini
stellar occultation observations,8), 9), 19), 58) providing important constraints for the
physical properties and size distribution of unseen individual ring particles.

Fig. 8. a) Identical particle simulation with τ = 0.5, rh = 0.85, using ‘frosty’ particle elasticity

model. b) Simulation with same parameters, except having q = −3 power-law size distribution

with Rmax/Rmin = 10. c) Particles with R > Rmax/2 shown separately.

∗) The ring brightness in a given distance depends on ring longitude φ in a bi-symmetric man-

ner:14),17) for example in the ground-based observations the brightness exhibits minima at φ ∼ 70◦

and ∼ 250◦ with respect to sub-observer direction. The largest variation, ±20%, occurs in the

mid-A ring when the rings are viewed at ∼ 15◦ opening angle; the minimum corresponds to ring

longitudes where the wakes are viewed along their average long-axis.
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§4. Viscous instability and overstability

The Voyager and Cassini data have revealed overwhelming amount of fine struc-
ture in Saturn’s rings. Much of this is connected to perturbations by external satel-
lites (in particular in the outer A ring), but many mysteries remain, for example
what is the cause of the B ring optical depth jumps, where the optical depth sud-
denly drops from τ ∼ 5 to τ ∼ 2 in ∼ 50 km wide regions.10) Similarly, the overall
structure of the C ring consists of moderately dense plateaus (τ ∼ 0.5) separated by
hundreds of kilometers wide low optical depth (τ ∼ 0.05) regions.

Very early on, viscous instability was evoked27), 29), 66) to explain such bimodal
variations. In these models, the collisional flux of particles (proportional to dy-
namic viscosity η = ντ ∝ τβ+1) is directed toward density maxima (equivalent to
β < −1), eventually establishing a state where the flux from dense but dynamically
cool ringlets is balanced by the flux from rarefied, dynamically hot regions. Never-
theless, this model was soon discarded, mainly as the first laboratory measurements5)

indicated too dissipative particles for the instability mechanism to work.2),67) Also,
the observed structure did not agree with the predictions of the simple instability
models, according to which the ring should separate into high τ ringlets surrounded
by almost empty gaps.21) Thus other alternatives gained attention, among them
those related to the possibility that dense rings are viscously overstable.4) In the
axisymmetric overstability the radial particle flux is directed away from density max-
ima, like in a stable ring. However, the flux increases so strongly with density (large
β), that the system overshoots in trying to smooth the density variations, instead
leading to density oscillations. Although it appears unlikely that overstability could
account for large scale structures in the densest rings,26) there are clear indications
of small-scale ∼ 100 meter axisymmetric oscillations in moderate τ locations in the
rings9),58) likely to represent such overstable oscillations.

4.1. Viscous overstability (oscillatory instability)

The isothermal hydrodynamical models predicted that practically any flattened
ring system (with β & 0) should be overstable,52) leading to growing axisymmetric
oscillations in density and velocity components, eventually saturating at some finite
amplitude via nonlinearity.53) The mechanism itself was confirmed in direct N -body
simulations, which however indicated a considerably more stringent condition for the
onset of overstability, β & 1.44) This holds for nongravitating simulations (e.g. the
smooth particle model is overstable for τ & 4 as anticipated from Fig. 2d), as well for
simulations where the vertical self-gravity is approximated with an enhanced vertical
central force (the trick Ωz/Ω > 1, originally devised in Ref. 67), leading to β > 1
already for τ ∼ 1, in a similar fashion as in the case of actual vertical self-gravity (see
the insert in Fig. 5).∗) Transport coefficients derived from simulations with different
values of Ωz/Ω, in combination with improved non-isothermal hydrodynamical mod-

∗) Same condition, β & 1 works also in nongravitating 2D simulations, where the steep rise

of νnl when the close-packing limit is approached, makes the system strongly overstable already

for τ & 0.4. This fact was utilized in Ref. 43) to directly demonstrate overstability before it was

technically feasible in 3D simulations.
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els44),49) were useful in analyzing the linear growth of oscillations, and also allowed
analytical treatment of saturation in weakly nonlinear case.50) Recently, significant
progress has also been made using kinetic theory approach.25)

However, it is currently unclear what is the overstability condition for a fully
self-gravitating ring. The simulations44) indicate that self-gravitating systems ex-
hibit overstability for τ & 1, but only if the wake-structure is not too strong: see
the upper left corner of Fig. 5 (rh ∼ 0.6). On the other hand, for stronger wakes the
overstability is clearly suppressed, though the overstability condition β & 1 should
be satisfied by an ample margin (strong wakes imply β & 2). This suppression
might be related to different geometry and phase of the velocity and density oscilla-
tions for overstability and wakes, combined with the fact that they prefer practically
similar wavelength range. In any case, even an approximative analytical theory
is missing, making numerical simulations indispensable in looking the interplay of
wakes/overstability.∗)
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Fig. 9. Overstable oscillations followed over

one oscillation period (∼ 1.2 orbital pe-

riods; the prolongation is due to self-

gravity). The calculation region is 1000 ×
400 particle radii. Note the vertical

‘splashing’,4) the ring behaving in a nearly

incompressible manner: the vertical scale

in the plot is exaggerated by factor 10.

Figure 9 illustrates the overstable
oscillations (superposed with weak in-
clined wakes) in a dense system with
moderate self-gravity (τ = 5, rh = 0.65).
In contrast to systems with strong wakes
at larger rh, the τ now stays very high
even at the density minima, thus remi-
niscent of the conditions at the B ring.
If this type of behavior is typical to
the densest part of the B ring ( r ∼
110 000 km), then according to the sur-
vey in Fig. 5 the internal density of par-
ticles should be about 300–450 kgm−3,
suggesting quite under-dense porous ice
particles.

Unfortunately, the densest regions
in the B ring are opaque (or very
nearly), making it hard for stellar oc-
cultation experiments to obtain reliable
optical depths. One possibility to check
observationally for the presence of over-
stable oscillations is the shadows the
density crests would cast when the solar
elevation is small. Although the shad-
ows would be non-resolved, they would
make the ring brightness depend on the
azimuth (predicted amplitude ∼ 10% at
5◦ solar illumination angle).48) How-

∗) Unfortunately the technical requirements are quite demanding: ideally, the size of simulations

should be several tens of λcr’s (Fig. 9 corresponds to just 5λcr×2λcr, even with N = 270 000 particles.
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ever, observing such a signature, even if present, is complicated.

4.2. Viscous instability

In the case of viscous instability, the hydrodynamic stability criterion β < −1
is fully consistent with direct N -body simulations, although the minimum unstable
wavelengths (∼ 200 particle radii) are about a magnitude longer than what simple
hydrodynamical linear stability analysis predicts.46) Figure 10 displays larger-scale
simulation with the frosty particle elasticity model, which leads to spontaneous am-
plification of density fluctuations for 0.75 . τ . 2.

Figure 11 depicts in more detail the structure resulting from viscous insta-
bility, characterized by a (near) balance of radial particle flux between flattened
dense ringlets surrounded by rarefied, large velocity dispersion regions. In particu-
lar, Fig. 11c) shows the profile of dynamic viscosity, which in this nonlinear quasi
steady-state has practically constant value (though one of the ringlets corresponds
to local bump in η and is accordingly slowly dissolving). With time, the ringlets
slowly merge, the typical separation growing ∝

√
t. Thus at least in principle, large

scale structure may emerge as a result of viscous instability.46)

Nowadays, viscous instability is typically disregarded as a candidate for the ring
fine-structure, basically since it requires fairly elastic particles in order to operate.
In such a case the self-gravity wakes are harder to form. Thus the observed wake
structure in the A and B ring is usually taken as an evidence against elastic particles
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Fig. 10. Emergence of viscous instability in larger-scale simulations46) using the frosty particle

elasticity model. The value of β is for the uniform initial state, β ≤ −1 indicates linear instability.
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using the smooth particle elasticity model. The frame c) depicts the dynamic viscosity profile

(solid curve), showing also separately the local and nonlocal contributions.46)

— though based on Fig. 7, this argument is perhaps not as solid as typically assumed.
It is also important to keep in mind that even the ‘standard’ frosty particle model
would imply instability, if the effective particle size were smaller than the nominal
1 meter assumed in Fig. 2 (R . 5 cm would make it unstable; what matters is the
low τ velocity dispersion in terms of c/(RΩ)).46) Nevertheless, the basic instability
model always requires a balance between a rarefied and a dense region, and thus,
although it might have relevance in the C ring, does clearly not apply to the structure
of the dense B ring.

There is an interesting variant of the standard instability model, the possibility
of selective instability of small particles against the more uniform background of
larger ones. Direct simulations46) indicate that such a situation is possible if the
coefficient of restitution is smaller in impacts between small particles, than in impacts
involving large particles. Such size-dependence of εn adds a new degree of freedom
to the system, and in principle allows a balance of radial flux also between two dense
regions. Importantly, the contrast can also have very different values depending on
the details of the elasticity model assumed (Fig. 12). Nevertheless, this mechanism
has yet been very little studied, and due to lack of relevant measurements it remains
unclear whether real particles possess suitable size dependence of εn leading to this
type of instability.
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Fig. 12. Two examples of selective viscous instability in simulations (viewed from above, after 700

orbital periods). The systems consist of two particle sizes with R2/R1=3, and τ1 = τ2 = 0.5.

Small (large) particles are indicated by gray (black) color, and the solid (dashed) white curve

indicates their radial density profile. In the upper frame the impacts between small particles

are much more inelastic than those between large particles, leading to strong density contrast

among the small particles. In the lower frame the size-dependence of elasticity is smaller, leading

to less pronounced variations. For exact parameter values, see Figs. 21 and 22 in Ref. 46).

§5. Summary

Saturn’s rings provide an ideal laboratory to study the dynamics of astrophysical
disks.7) Dissipative impacts keep the system cold (the ratio of random velocities to
rotation speed is ∼ 10−6 times that in galaxies), making it sensitive to viscous and
gravitational disturbances. The time scales of local and global evolution are widely
separated, allowing to study the local steady-state and the emergence of radial fine-
structure separately from the origin of the whole ring system. There is also plenty
of external and internal stirring in the rings: the response to perturbations gives
important clues for particle properties.

The existence of self-gravity wakes in Saturn’s rings, first predicted in computer
simulations41) (see also Ref. 62) has since then been confirmed by many types of
observations. Their presence seems to favor fairly dissipative, under-dense particles
— though it is good to remember that the parameter ranges of existing simulation
surveys are far from exhaustive. The viscous overstabilities and instabilities are also
obtained readily in simulations, though it is less clear if and how they connect to the
actual ring structure. Nevertheless, it seems that almost any type of fine-structure
generated in the computer sooner or later finds some counterpart in observations:
the problem is that there is much more structure in the rings (in particular in the B
ring) than can be explained by existing models.

There are important mechanisms not addressed in this brief review, like the
adhesive forces between ring particles,1) and the possibility that the ring particles
have significant regolith on their surfaces (which can be released on perturbed re-
gions, see e.g. the supplement of Ref. 55). The ring ‘particles’ themselves could
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in fact be rubble-piles of small basic unit particles, with the measured size distri-
bution manifesting the balance of accretion and fragmentation.3),37) The realistic
simulation of such processes would require significantly larger N than so far used,
preferentially of the order of 107 particles or more. Same holds for direct simulation
of other outstanding problems, like the migration of propellers, the dynamics of per-
turbed ring edges, or the damping of satellite density waves. Hopefully there will be
a breakthrough in the near future, either by the use of special processors, like the
GRAPE (see the poster by Fujii et al. in these proceedings) or by the development
of simulation codes suitable for large-scale parallel computing.

Finally, the power of combining dynamical and photometric modeling38), 45) must
be stressed. Detailed models of the azimuthal asymmetry and wakes17) are one
example; other recent one is the successful reconciliation of observed ring opposition
brightening with dynamical models with a realistic particle size distribution.47)
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Appendix A
Local Simulation Method

A.1. Dynamical equations

In the local simulation method the calculations are restricted to a small co-
moving region, using linearized equations, ẍ − 2Ωẏ + (Ωr

2 − 4Ω2)x = Fx, ÿ +
2Ωẋ = Fy, z̈ + Ωz

2z = Fz, where x denotes radial direction, y the direction
of orbital motion, and z is perpendicular to the equatorial plane. The coordi-
nate system moves with angular velocity Ω in a circular orbit at a radial dis-
tance r. For a central point mass, the epicyclic (radial) frequency Ωr and the

Fig. 13. Coordinate system of local simula-

tions.

vertical frequency Ωz equal Ω. The ~F
denotes additional forces, e.g. due to
impacts or self-gravity. When ~F = 0
these equations describe epicycles: the
guiding centers drift with the velocity
(Ωr

2 − 4Ω2)/(2Ω)x, which reduces to
−3

2Ωx for a central point mass.

A.2. Boundary conditions

The particles leaving the simulation
system (Fig. 13) are treated with peri-
odic boundary conditions (‘sliding-brick
method’).62), 67) If the crossing occurs
across the inner or outer radial bound-
ary, the velocity is modified by ∆ẏ = ±3/2 ΩLx, which corresponds to the difference
of shear velocity across the radial size Lx of the calculation cell. It is important to
note that there is nothing special about the boundaries: exactly same shear is present
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in every point of the system. The results are independent of the origin of the coordi-
nate system, and the size of the calculation region, provided that it is large compared
to the mean free path between impacts.∗)

A.3. Treatment of impacts

Two different treatments are used for collisions: these are either modeled as
instantaneous velocity changes39), 41), 64) or by including impact forces between any
(slightly) overlapping particle pair.32), 42) In the former case, the impact outcome
is determined by the coefficient of normal (0 ≤ εn ≤ 1) and tangential restitution
(−1 ≤ εt ≤ 1). If εt 6= 1, the particle spins need also to be included. A simple model
for slightly non-spherical shape has also been studied, by assuming that the tangent
plane of impact is randomly tilted (by a small amount) with respect to the line
joining the colliding particles.40) From the change of relative velocity, the individual
changes are determined by the conservation of linear and angular momentum.

With gravitating particles, in particular in the regime where gravity leads to
the formation of semi-permanent aggregates24), 42) the instantaneous impact method
easily fails: the net attraction between a particle pair can be directed toward each
other, even in the case when their post-collisional velocity difference is zero, which
will lead to overlap on the next step. Instead of artificially pushing the particles
apart, one can include an supporting pressure force during the impact. A conve-
nient choice is a simple visco-elastic force F (α) = k1α + k2α̇, between any slightly
penetrating particle pair (α > 0 denotes the penetration depth). The CPU-time
consumption is tolerable, provided that the impact duration Tdur is chosen not too
short compared to dynamical timescales of interest.∗∗)

A.4. Search of impact pairs

The speed of simulations depends critically on the efficient search of impact pairs.
In their seminal non-gravitating local simulations Ref. 67) used the fact that orbits
between impacts are Keplerian epicycles, and solved iteratively for the intersection
time of each pair of epicycles. The pair with the smallest impact time was chosen and
their post-impact orbital elements were calculated, leading to updated intersection
times with all the other particles. The system was thus moved from one impact
to the next (“event-driven” method). For larger N it is advantageous to integrate
the equations of motions (this also allows inclusion of additional forces), and during
each time-step search for potential interactions among the neighboring particles.
Among this list, the impacts are executed and the list updated as in the event-

∗) Note that periodic boundaries assume that the ring is homogeneous in planar directions:

different treatment is needed for example when simulating propeller structures around an embedded

moonlet, where the symmetry between incoming unperturbed flow and the perturbed outgoing flow

is broken (see e.g. Refs. 28), 31), and 54)). Similarly, modified boundary treatment has been used in

the case of modeling the local response to a passing satellite density wave;33) fully general simulation

of density waves probably requires the use of azimuthally complete simulation.22)

∗∗) The attractive feature of the linear model is that the constants k1 and k2 are easily tied to the

desired Tdur and εn. Friction has also been included.32),42) The results are identical to those with

instantaneous impacts, as long as Tdur . 10−3 orbital periods.42) In future more realistic impact6)

and adhesion65) models could also be used.
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driven method. The number of neighbors examined for potential impacts can be
controlled by keeping track of the maximum pre-step separation which has led to an
impact during previous steps. In the optimal case the number of pairs examined is
proportional to cN/(RΩ).

A.5. Treatment of self-gravity

Inclusion of self-gravity increases the computational burden significantly: besides
the calculation of forces themselves, the enhanced impact frequency and velocity dis-
persion slow down the collisional calculations. Also, larger N is needed as the size of
the calculation cell must be large compared to the size of the wake structures. In the
optimal case, about equal time is spent in the calculation of gravity and impacts: to
achieve this, it is important not to use too short time step in the gravitational cal-
culations (it is usually sufficient to do force evaluations at most ∼ 500 times/orbital
period, while the impact calculations might use an order of magnitude shorter steps).

The calculation of gravitational forces has been done either with direct sum-
mation, or in the case of large N , with a combination of direct summation for the
nearby particle pairs (say within ∆ < ∆min ∼ 0.25λcr) and a 3-dimensional grid
evaluation for the distant gravity (inside ∆min < ∆ < ∆max = min(Lx, Ly)) with
FFT utilizing the periodicity in planar (sheared) coordinates.44) A tree-method is
also used,39) but there is no clear advantage over the use of grid (at very large N it
might even be slower): the nearby forces must in every case be evaluated accurately,
in order to include correctly the heating by binary encounters. A correction for the
overall vertical self-gravity from ∆ > ∆max is easy to include analytically. A fast
approximative treatment of strictly axisymmetric gravity is also possible, using a
superposition of analytically evaluated forces from a plane-wave decomposition.46)

A.6. Tabulation

An essential part of any simulation code, besides storing snapshots of the sys-
tem, is to tabulate time-averages of various quantities of interest, (impact frequency,
components of pressure tensor, radial and vertical profiles, Fourier coefficients etc.).
For most part this can be done in conjunction with impact and gravity calculations.
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