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Abstract. We model temperature and density profiles for a di-
lute planetary ring, based on the hydrodynamic balance equa-
tions for momentum and energy of granular flows. Within our
approximation the ring consists of inelastic smooth spheres of
unique size and mass, while the fluxes of mass, momentum and
energy are linear functions of the gradients of density, velocity
and temperature. The resulting system of coupled differential
equations leads to temperature and density profiles, which we
compare to the results of a triaxial kinetic approach to the dy-
namics of a planetary ring. We find that both approaches agree
fairly well in the elastic limit. Further, we carry out event driven
N-particle simulations of a ring, subject to the conditions of the
theoretical model. The simulated profiles are then compared to
the theoretical ones: for the density a good agreement is found
for both theoretical approaches, but the simulated temperature
profiles increase monotonically with vertical distance whereas
the theoretical profiles always have a turnover at some distance
from the mid plane. This disagreement is likely to be connected
to the vertical dependence of the velocity ellipsoid, which is not
taken into account in the theoretical treatments.

Key words: hydrodynamics – methods: N-body simulations –
planets and satellites: general

1. Introduction

In the past, theoretical investigations as well as simulations of
planetary rings have mainly concentrated on the disk’s horizon-
tal features, e.g. gaps, wakes or resonances, (see for instance
Showalter et al. (1986) and references therein). In the majority
of the applications the ring was treated as a two-dimensional
object, an approximation that is justified for many purposes,
considering for example the thickness of Saturn’s ring system
(∼ 10m−100m) of only a few typical particle diameters com-
pared to its horizontal extension (∼ 108m). On the other hand
there are dynamical properties of the particle ensemble, such
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as the collision frequency and the optical depth, that clearly
possess their particular functional dependence on density and
temperature due to the rings’ actual three-dimensional nature
(Stewart et al., 1984). Therefore, a knowledge of the vertical
ring structure is of principal interest.

Theories describing the ring dynamics usually incorporate
methods from kinetic theory, in order to derive balance laws
for mass, mean velocity and energy of the particle stream. In
the literature the non-isotropic nature of a ring system is taken
into account by using a triaxial Gaussian velocity distribu-
tion (Goldreich & Tremaine, 1978; Araki & Tremaine, 1986;
Araki, 1988; Araki, 1991). Within this framework the descrip-
tion of the non-equilibrium state of the system is of zeroth order,
in the sense of a systematic expansion of the distribution func-
tion in orders of the gradients of density, mean velocity and
temperature. In the same theoretical context Simon & Jenkins
(1994) studied the vertical components of the balance laws for
mass, momentum, and energy, and obtained numerical solutions
for the temperature and density, depending on the height above
the midplane of the planetary ring.

In this study, we follow the usual hydrodynamic approach to
granular kinetics and compare the results to those of Simon and
Jenkins, i.e. we employ an isotropic Gaussian phase space distri-
bution plus first order corrections to give a consistent description
of the non-equilibrium fluxes of mass, momentum, and energy.
The particles are identical smooth spheres (i.e. rotational de-
grees of freedom are neglected) that collide inelastically, where
the energy dissipation is described in terms of a constant normal
coefficient of restitution. We make use of constitutive relations
derived by Jenkins & Richman (1985), where kinetic theory has
been systematically extended to include the dissipative nature
of the interparticle collisions in granular matter (see also Lun et
al. 1984). In the present work, we employ their results in order
to describe the ring as a (three-dimensional) granular flow under
the influence of the gravity of the central planet.

Under the same conditions we then make simulations of a
planetary ring, varying the optical depth and the coefficient of
restitution. We use an event driven code to simulate N particles
in a box in the gravitational field of a central mass with peri-
odic boundary conditions in radial and azimuthal direction. We
compare the vertical stratification of density and temperature
in the simulation box to the theoretical profiles of the hydrody-
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namic and the triaxial kinetic approach to the dynamics of the
ensemble of inelastic ring particles.

The paper is organized as follows: In Sect. 2 the balance
equations for mass, momentum, and energy are given, derived
by using an isotropic Gaussian distribution function, together
with the constitutive relations. We then solve the vertical compo-
nents of the balance laws numerically. Furthermore, we resolve
the corresponding balance equations of the triaxial approach
of Simon & Jenkins (1994) and discuss the differences to the
solutions of the hydrodynamic approach. In Sect. 3 we present
the simulations and the comparison to theoretical expressions.
Finally, in Sect. 4 we summarize our results and discuss the
solutions.

2. Balance laws

2.1. Hydrodynamic approach

The dynamics of granular matter are theoretically described in
terms of kinetic theory, based upon a kinetic equation of Boltz-
mann or Enskog type. By computing the first three moments of
this kinetic equation, the balance laws of mass, momentum, and
energy for a dilute system of inelastic smooth spheres read

(∂t + uα∇α)% = −%∇αuα

%(∂t + uα∇α)uβ = %Fβ − ∇αPαβ (1)
3
2
%(∂t + uα∇α)T = −Pαβ∇αuβ − ∇αqα − Γ .

Here % and u are the density and the mean velocity of the
ring material andF is the external force exerted on the par-
ticles. T = (1/3)〈(v − u)2〉 is the granular temperature
(m := 1, kB := 1) and q = (1/2)%〈(v − u)(v − u)2〉 is
the heat flux, defined in terms of the velocity fluctuations,P̂ is
the pressure tensor, andΓ is the steady dissipation of energy
due to inelastic interparticle collisions. We relate the thermo-
dynamic fluxes of mass (%u), momentum (̂P ), and energy (q)
to their respective thermodynamic forces (∇%, ∇u, ∇T ) via a
linear ansatz, i.e.

Pαβ = pδαβ − 2ηDαβ − ζ∇µuµδαβ (2)

and

qα = −κ∇αT . (3)

The shear and bulk viscosity and the heat conductivity are de-
noted byη, ζ andκ respectively, and̂D is the shear tensor.

Dαβ =
1
2
(∇αuβ + ∇βuα − 2

3
δαβ∇λuλ) . (4)

For the transport coefficientsκ andη, as well as for the cool-
ingΓ we employ the expressions derived by Jenkins & Richman
(1985) for granular gases in the dilute and nearly elastic limit

η =
5
24

√
π%p d

(1 + ε)(3 − ε)

√
T

κ =
25
4

√
π%p d

(1 + ε)(49 − 33ε)

√
T (5)

Γ = 12
(1 − ε2)ν2%p√

πd

√
T 3 .

Hereε is the constant coefficient of restitution,%p andd are the
particle’s bulk density and diameter, respectively, andν = %/%p

is the filling factor. We neglect corrections to the transport coef-
ficients and the equation of state (Chapman & Cowling, 1970;
Canahan & Starling, 1969) due to the finite particle volume,
keeping in mind that they become important in the denser re-
gions of a planetary ring (Araki & Tremaine, 1986).

In order to apply Eq. (1) to the particle flow in a planetary
ring, we choose cylindrical coordinates(r, ϕ, z), wherez = 0 is
the midplane of the ring. The external forceF is the gravitation
of the planet

F = ∇ GM√
r2 + z2

= −Ω2(err + ezz) + O{(z/r)2} (6)

with the Kepler frequencyΩ =
√

GM/r3. In the following
we neglect orders of(z/r)2, sincer is about108m, while we
are interested in a vertical extension of less than a hundred me-
ters. Furthermore, for a stationary ring we haveu = rΩeϕ,
∂t{%,u, T} = 0 and∇ · u = 0. We want to obtain the ver-
tical profiles of density and temperature, thus we evaluate the
z-components of the balance laws (1) subject to the latter con-
ditions. Together with the constitutive relations (2) and (3) and
the transport coefficients (5) we find

(νT )′ + zΩ2ν = 0

a(ε)
[
T ′√T

]′
+ b(ε)Ω2

√
T − c(ε)

d2 ν2
√

T 3 = 0 (7)

for the balance of momentum and energy, while the continuity
equation is trivially fulfilled. A prime denotes differentiation
with respect toz. In the second equation the first term stands
for the contribution of heat conductivity to the vertical energy
balance, the second one describes viscous heating, and the third
the collisional cooling. The functionsa, b andc stand for their
respective dependences on the coefficient of restitution, given
by

a =
1

(1 + ε)(49 − 33ε)

b =
3

40(1 + ε)(3 − ε)
(8)

c =
48
25π

(1 − ε2) .

The calculation of the transport coefficients (5) is restricted
to the nearly elastic case and further it is based on the as-
sumption of small gradients of temperature, density, and ve-
locity. So, for instance, the functional dependence of the vis-
cosity in (5) on the temperature and in particular its inde-
pendence of the density are valid only if the systems density
and temperature can be considered as being constant over dis-
tances larger than the mean free path of the particles. Fur-
thermore, since any ring particle moves on a Keplerian or-
bit in between two collisions, its free path is essentially re-
stricted by its epicyclic motion (Goldreich & Tremaine, 1978;
Stewart et al., 1984). Strictly speaking, the collision time of the
hydrodynamic system

tc =
√

πd/(24
√

Tν) (9)
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(see Chapman & Cowling 1970) should be significantly smaller
than the characteristic time scale of Keplerian motiontk ∼ π/Ω,
i.e.

Ωd

ν
√

T
< 24

√
π . (10)

Assuming for the moment a Gaussian density profileν =
ν0 exp{−(z/H)2} with a typical scale heightH and a constant
(i.e.z-independent) temperatureT0 (see Stewart et al. 1984), we
find z < 2H, for T0 ∼ 10−4m2/s2, ν0 ∼ 10−2,Ω ∼ 10−4s−1,
andd ∼ 1m. This means that the validity of (5) is restricted to
the region near the midplane of the ring. We have to be aware
of this fact when applying (7) to the ring system, where the
density evidently decreases quickly out of the equatorial plane.
Further, since the impact frequency scales proportional to the
optical depthτ , we expect inequality (10) to be valid up to higher
latitudes for the case of a larger optical depthτ .

2.2. Comparison between hydrodynamic and triaxial kinetic
approach

In the framework of the triaxial approach of Goldreich &
Tremaine (1978) to ring dynamics, Simon & Jenkins (1994)
investigated the vertical structure of a planetary ring. They cal-
culated the restitution dependence of the second moment of the
velocity fluctuations approximatively and formulated the bal-
ance laws in terms of an anisotropic Gaussian velocity distri-
bution. Under the assumption of az-independentvelocity el-
lipsoid the vertical components of these balance laws lead to
two coupled differential equations for density and temperature
(T ≡ 1/3 Tr{Tαβ}) that are the triaxial analogue of Eq. (7):

(νT )′ + λ(ε)zΩ2ν = 0

α(ε)
[
T ′√T

]′
+

β(ε)
d

ΩTν − γ(ε)
d2 ν2

√
T 3 = 0 (11)

with

α =
[1 − 2

7 (1 − ε)][15 − 1
7 (1 − ε)]

(1 + ε)
{
49 − 33ε + 1−ε

2744 (5ε − 54)(237ε − 461)
}

β =
1

9 − 5ε

√
1 − ε

125π
(225ε2 + 4415ε − 2876) (12)

γ =
48
25π

(1 +
(ε − 1)(195ε − 979)

6272
)(1 − ε2)

and

λ =
7

2 + 5ε
.

We observe a different temperature and density dependence of
the heating term (∼ Tν) in comparison to Eq. (7) (∼ √

T ). In
the hydrodynamic description the heating is a consequence of
the granular viscosity, which is a material property of the ring
particles. As already argued, the mean free path of a particle is
restricted by the epicyclic motion. If̄v denotes the most proba-
ble velocity of the particle andl is its mean free path, we have
η ∼ νv̄l. As long as the collision timetc (Eq. (9)) is substan-
tially smaller than the characteristic orbital timetk = π/Ω we

Fig. 1. Restitution dependence of the coefficients in Eq. (7) and (11).
a, b, c, andα, β, γ stand for the dependence onε of the heat conduc-
tion, heating, and collisional cooling, respectively. The functionλ is a
measure for the restitution dependence of the temperature anisotropy.
(All shown quantities are normalized by the maximum values ofc or
γ, respectively.)

havel = v̄tc and thusη = νv̄2tc. For inelastic particles we then
obtain the formula (5), sincēv ∼ √

T , and the density depen-
dence cancels. For low optical depths and for higher latitudes
however, we should setl = v̄tk, since the mean free path is re-
stricted by the epicyclic motion. Then the density dependence
of the heating term is retained and we findη ∼ Tν. In detail
this modified viscosityη∗ reads

η∗ = 5
π%p

Ω(1 + ε)(3 − ε)
νT . (13)

We will apply this modification in Sect. 3 and discuss its im-
provement to the hydrodynamic balance laws, when we com-
pare the theoretical and simulated stratification.

Comparing the coefficientsa, b, c with α, β, γ that describe
theε dependence of the heat flux, heating, and cooling contri-
bution to the energy balance, respectively (see Fig. 1), we find
rough qualitative and quantitative agreement for the cooling in
the triaxial and the hydrodynamic system. In both cases the
cooling vanishes, when the coefficient of restitution approaches
unity. However, we observe different properties for the heating:
in the hydrodynamic approach we see a finite heating contribu-
tion for all values of the restitution due to the granular viscosity,
monotonically increasing asε decreases. On the other hand, the
heating contribution to the triaxial heat balance equation is a
consequence of the temperature anisotropy, which in turn stems
from the inelasticity of the interparticle collisions. Thus, the
heating term becomes zero for elastic particles (ε = 1), where
the temperature is isotropic. In this case, since the distribution
function is purely Gaussian, the heat balance equation cannot
contain a heating term. The critical valueεc ≈ 0.635, whereβ
approaches zero, corresponds in thez-integrated triaxial kinetic
approach to ring dynamics to a vanishing optical depthτ , thus,
in this limit, heating is getting more and more inefficient.

We observe an additional restitution dependenceλ(ε) of
the momentum balance equation (first relation in Eq. (11)),
which is related to the temperature anisotropyTzz < T
(Simon & Jenkins, 1994).
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Fig. 2. Temperature and density profiles from the numerical solution of
the linear hydrodynamic (7) and the triaxial kinetic balance equations
(11) for different values of the coefficient of restitution.

We note that for a zero order distribution function, like
the anisotropic Gaussian, all odd moments of the velocity
fluctuation(vα − uα) vanish. Consequently, the heat flux (∼
(vα −uα)(v −u) · (v −u)) is a priori zero (Zhang, 1993). Si-
mon & Jenkins (1994) provided a heat conduction contribution
to their energy balance equation, by incorporating a form of the
heat flux calculated by Zhang (1993), which was derived using
higher order corrections to the anisotropic Gaussian.

2.3. Numerical Solution

Next, we solve Eqs. (7) and (11) numerically, employing a vari-
able step size fourth order Runge Kutta method. Since the dif-
ferential equations are first order inν and second order inT ,
the appropriate initial conditions are

T (0) = T0 ν(0) = ν0 T ′(0) = 0

where the last relation is due to the requirementT (z) = T (−z).
If we choose as parameter valuesΩ = 1.5 · 10−4s−1,

T0 = 10−4m2/s2, ν0 = 0.01, andd = 1m, which are close
to the probable values of Saturn’s A ring, we obtain fairly simi-
lar temperature and density profiles for both approaches. These
are plotted for different values of the restitution in Fig. 2. The
density profiles are strongly peaked atz = 0, decaying quickly
for increasing heightz over the midplane of the ring, while the
temperature shows a minimum in the midplane. Furthermore,
the profiles get narrower when the interparticle collisions are
more dissipative, i.e. the ring becomes thinner.

In spite of the differences of the balance laws that we have
pointed out above, both approaches yield similar results. Neither
the different functional dependence on temperature and density
of the viscous heating term, nor the different restitution depen-
dence ofb or β, respectively, nor the additional parameterλ(ε)
in Eq. (11), alter the vertical stratification near the midplane of
the ring considerably. Far off the ring plane however, where the
density approaches rapidly zero, we observe a different behav-
ior of the temperature profiles. The temperature of the triaxial
kinetic approach finally shows a linear dependence on z. Since

the heating is proportional to the density, it gets quite ineffective
for largez. Thus, the system has to build up comparatively high
temperatures in order to establish energy balance. In contrast the
hydrodynamic viscous heating, independent of the density, in-
creases with temperature as z increases. This implies, that lower
temperatures are needed in order to achieve energy balance. Fi-
nally, the temperature reaches a maximum value and then de-
creases. This difference in the temperature profiles is dominant
however only at latitudes where the density is essentially zero.

In order to establish a connection to the formalism of Gol-
dreich & Tremaine (1978) we integrate the energy balance equa-
tions in Eq. (7) and (11) overz. The additional requirement, that
thez-integrated heat flow should vanish then leads to the for-
mulae

b(ε)
c(ε)

[
Ωd

ν0
√

T0

]2

=

∫ ∞
0 dz ν̃2

√
T̃

3

∫ ∞
0 dz

√
T̃

(14)

β(ε)
γ(ε)

Ωd

ν0
√

T0
=

∫ ∞
0 dz ν̃2

√
T̃

3

∫ ∞
0 dz T̃ ν̃

, (15)

respectively, where the definitions̃ν ≡ ν/ν0 and T̃ ≡
T/T0 are used. By these equations the parameter combina-
tions Ω, d, ν0, T0 that correspond to solutions with vanishing
z-integrated heat flux are determined, depending on the resti-
tution (Simon & Jenkins, 1994). For instance, we can fixΩ, ν0
andT0 and obtain an appropriated by iterating Eq. (14, 15).
This in turn leads via

τ =
3
d

∫ ∞

0
dz ν (16)

to relations between optical depth and restitution. The triax-
ial ε-τ relation reproduces well the simplified formula (18) of
Goldreich and Tremaine,and both agree with the hydrodynamic
relation in the elastic limit (Fig. 3). The deviations of the hy-
drodynamic curve are a consequence of the restriction of the
validity of the granular transport coefficients to the nearly elas-
tic case.

3. Simulations

In this Section, we compare the theoretical profiles from the nu-
merical solution of Eq. (7, 11) to the results of 3-D event driven
N-body simulations, using the code described in (Salo, 1992).
Depending on the simulation parameters, we simulate about
500 to 4000 identical particles in a box with periodic bound-
ary conditions. The particles have a diameter ofd = 2m, and
the simulation box is located at a distance ofr = 108m of
the central planet withΩ = 1.95 · 10−4s−1, corresponding to
typical values of the optical thick rings of Saturn. Initially, the
particles are randomly placed in the box having Keplerian ve-
locities u = rΩeϕ and a superimposed random velocity that
corresponds to an initial temperature. In a collision the particles
loose energy determined by the coefficient of restitution, while
in between two collisions they move on Keplerian trajectories,
according to the equations of motion



650 J. Schmidt et al.: Vertical profiles of a planetary ring

Fig. 3.ε−τ relations from Eq. (14) and (15) compared to the Goldreich-
Tremaine formula Eq. (18). The diamonds are the values taken from
the simulations with a mean velocity dispersion of 25Ωd. The actual
critical ε values corresponding to an infinite calculation box extent
would be slightly larger (about 0.01 at most).

ẍ − 2Ωẏ = 0
ÿ + 2Ωẋ − 3Ω2y = 0 (17)

z̈ + Ω2z = 0

wherex andy are the azimuthal and radial coordinates in the
co-rotating box, withx, y, z � r. In order to obtain results com-
parable to the theoretical investigations of Sect. 2 we carry out
the simulations for a constant restitution, and neglect rotational
degrees of freedom of the particles.

According to the simplifiedε-τ formula of Goldreich &
Tremaine (1978) for dilute ring systems(
1 − ε2

) (
1 + τ2) ' 0.6 (18)

for a given value of the constant restitution, equilibrium exists
only for one particular value of the optical depth. Practically,
in the simulations we fix the optical depth via box size, particle
diameter and particle number. Then we adjust the coefficient of
restitution so that a finally constant temperature evolves.

If we take for a givenτ an ε that is too high, the simu-
lated system is unstable since it constantly heats up (see Fig. 4).
If ε is too low the system cools down monotonically, until an
equilibrium is reached that is established by nonlocal transport
processes, which are not considered in this paper.

In principle, we could vary the coefficient of restitution in
simulations and try to findε-τ pairs that are as close as possi-
ble to the limit of stability. However, this poses some practical
difficulties. Firstly, as we approach very close to the criticalε,
the equilibrium temperature rises strongly, and at some point the
validity of the local simulation method becomes questionable as
the implied mean free path between impacts becomes compara-
ble to the extent of the calculation region. Secondly, our success

Fig. 4. Development of the scalar velocity dispersion in simulations
plotted against the number of orbital periods for various values of the
coefficient of restitution. The optical depth is fixed (hereτ = 0.4) and
the restitution is varied.

in finding criticalε-τ pairs would vary in a spurious way with
different τ , and the so obtained vertical profiles would corre-
spond to different temperatures, making their direct comparison
difficult. For these reasons we chose the strategy to search for
ε-τ pairs which yield a fixed temperature, corresponding to a
velocity dispersion of about 25Ωd. This rather high temperature
assures that the influence of non-local heating, an effect that is
not considered in the theoretical formulas, is small and most im-
portantly, stays on a fixed level for all the studied optical depths
τ . It also assures that the profiles we obtain are not affected by
the size of the calculation region (i.e. by the number of particles).
The values ofε we obtain forτ = 0.1, 0.4, 1.0, 2.0, 3.0, 4.0, and
5.0 are0.645, 0.702, 0.820, 0.9125, 0.947, 0.964, and0.973, re-
spectively. Theseε-τ pairs fit well with the theoretical relations
given in the previous Section (see Fig. 3). In this way we get re-
sults that can be compared to the particular solutions of Eq. (7,
11) that fulfill the additional requirements (14) or (15), respec-
tively. The difference as compared to an criticalε that corre-
sponded to an infinite calculation region can be expected to be
fairly small: For example, forτ = 1.0 additional simulations
showed thatε = 0.830 is definitely unstable. A choice of these
runs is shown in Fig. 5.

We obtain the vertical stratification in the simulation box,
by dividing it into layers parallel to the midplane, and then
determining the particle number and velocity ellipsoid within
each layer. The shown scalar temperature is defined asT ≡
1
3Tr〈(vα −uα)(vβ −uβ)〉, and the equilibrium velocity disper-
sion we observe is anisotropic (see Fig. 6).

For nearly elastic collisions (ε ≥ 0.8), we find for both
theoretical ansatzes good agreement with the simulated density
profiles, while the agreement of the temperature profiles is not
bad, at least near the ring plane. When the collisions get more
inelastic (ε < 0.7), the hydrodynamic equations overestimate
the ring thickness and finally fail to produce even qualitatively
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Fig. 5.Density and Temperature profiles from simulations (diamonds)
for several values of the coefficient of restitutionε and optical depthτ .
Theoretical solutions of the hydrodynamic (solid,z > 0) and triaxial
(dashed,z < 0) equations are overplotted. Also shown is a solution
of the hydrodynamic equations with a modification of viscosity (dash-
dottedz > 0), as given by Eq. (13). For these curves the marks on the
positive z-axis of the right-hand side frames denote the points where
Eq. (13) has actually been applied and where inequality (10) gets false,
respectively. Forτ = 5.0 and4.0 the density profile of the modified
hydrodynamic treatment is indistinguishable from the hydrodynamic
one.

correct results. Here, the transport coefficients cease to give a
satisfactory description of the transport processes in the ring.
However, if we replace in (7) the viscosityη by η∗ given by
Eq. (13), in the outer layers of the ring where condition (10)

Fig. 6. Z-dependence of the temperature anisotropy of the simulated
data for several values of the restitution and optical depth. Plotted are
the ratios of vertical to radial and azimuthal to radial component of the
temperature tensor, respectively.

is invalid, we obtain density profiles that are in good agree-
ment with the simulations for all values of the restitution we
investigated. In the inelastic case the kinetic balance laws lead
to a slightly thinner ring as the simulations but the agreement
remains good.

Both ansatzes fail to model the simulated temperature pro-
files in the deeply inelastic case. The theoretical vertical energy
balance is achieved for too low temperatures. The reason for
this might be in both cases an overestimation of viscous heat-
ing. In the hydrodynamic description this is a consequence of
the restriction of the viscosity (as given by Eq. (5)) to the nearly
elastic case. This implies that for lowerε the viscosity in (7) may
have to be corrected to smaller values. The triaxial balance law,
on the other hand, is based on the assumption of az-independent
temperature anisotropy Simon & Jenkins (1994). However, in
the simulations we find that for largerz the radial component of
the velocity dispersion becomes more and more dominant, see
Fig. 6. Thus, in contrast to the simulations the theoretical heating
contribution∝ T to the triaxial energy balance is overestimated
by this assumption.

4. Discussion

In the present work we study the vertical stratification of a plan-
etary ring in the framework of a hydrodynamic description of
the granular particle ensemble that constitutes the ring. As a
consequence of the balance between energy input, driven by
the planet’s gravity and the cooling due to inelastic collisions, a
planetary ring is characterized by a non-uniform distribution of
the stationary temperature and density profile. In our approach
we assume that this system can be described locally in terms
of an isotropic Gaussian phase space distribution plus correc-
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tions that are linear in the thermodynamic forces, i.e. the spatial
derivatives of density, mean velocity, and temperature, that ac-
count for the non-equilibrium state of the system. This treatment
allows a consistent description of the fluxes of mass, momen-
tum and energy in terms of transport coefficients that are related
linearly to the corresponding thermodynamic forces. We inves-
tigate the vertical components of the associated hydrodynamic
balance laws and solve them numerically.

This approach is compared to the one of Simon & Jenkins
(1994), who investigated the vertical ring structure in terms of a
triaxial Gaussian velocity distribution. This treatment is on the
one hand more general, using a non-isotropic velocity ellipsoid,
on the other hand no further modification of the distribution
function due to the non-equilibrium state is considered. A heat
flux contribution that is derived under more general considera-
tions by Zhang (1993) is added by hand. Provided we apply a
simple correction to the granular viscosity stemming from the
restriction of the mean free path of a ring particle by the epicyclic
motion, both approaches yield fairly similar solutions. The the-
oretical density profiles are in a very good agreement with the
results of numerical simulations we carried out for different val-
ues of the optical depth and coefficient of restitution. We find that
the simulatedε-τ values obey the same relation as the triaxial
Gaussian approach and as the linear hydrodynamic approach in
the elastic limit, when the condition of a vanishingz-integrated
heat flux is superimposed on the theoretical balance laws.

Further, the simulations show that the ratios of the princi-
pal axes of the velocity ellipsoid as well as its orientation are
depending on latitude. This dependence has been neglected in
the derivation of the triaxial balance equations Simon & Jenkins
(1994) for reasons of simplicity. Our findings however point at
the possibility that it might become important in the description
of vertical energy balance in a planetary ring.

The theoretical models as presented in Sect. 2 are based
on the assumption that the dissipation of energy in the
interparticle collisions can be described in terms of a ve-
locity independent coefficient of restitution. However, we
know from experiments (Raman, 1918; Hatzes et al., 1988;
Supulver et al., 1995) as well as from theoretical considerations
using various different ansatzes (Pöschl, 1928; Andrews, 1930;
Pao, 1955; Kuwabara & Kono, 1987; Spahn et al., 1995;
Morgado & Oppenheim, 1997; Thornton, 1997), that
in general the restitution is a function of the im-
pact velocity. As pointed out in the considerations

of Sect. 3, the velocity independent restitution does not lead to
a model of a planetary ring that has a stable equilibrium state.
This drawback is removed when the coefficient of restitution
becomes a monotonically decreasing function of the impact ve-
locity. The corresponding extensions of the kinetic theory of
granular matter, in particular the calculation of the necessary
corrections to the distribution function and the transport coeffi-
cients, are subject of our ongoing and future work.
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